新技術調査表 (1)									登録番号	1301002			
名	称			Æ	有太橋				作成年月日	2013年2月26日			
<u> </u>	/ال			<u> </u>	9人(何			更新年月日	2024年4月19日				
副	題		戶	角形錐	岡管床版橋第	製品			開発年月日	2003年9月1日			
		1共 通	②道 路	区分	1材 料	大	分 類		特 記 項 目				
分	野	3公 3公	4河 川 6砂 防		2工 3製 4機 が 5その他	錙		橋長:16mまで,幅員:無制限, 組立ヤード面積:不要(一本架設時					
	開発	会社等名	日本製鉄株	式会	社			担当部署	建材開発技術部				
	会社	担当者名	高木 優任					TEL	03-6867-6866				
開発	提案	会社等名	日鉄エンジ	ニア	リング株式	会社		担当部署	橋梁商品部				
発者等	提案会社兼問い合せ先	担当者名 釘宮 栄作 〒 141-86						TEL	03-6665-3370				
	問い合		東京都品川						03-6665-4805				
	せ 先	ホームへ。ーシ゛	https://www.n: inka/common/po	ippon: df/ce_	steel.com/pro _14.pdf	duct/k	okudo_kyouj	e-mail	kugimiya.eisaku.xd8@eng.nipponsteel.com				

【概要】

角太橋は角形鋼管と直交する横つなぎ鋼管の格点部にコンクリートを充填して一体化するパネル 部材からなり、急速・簡単で狭隘地でも施工できる角形鋼管床版橋製品である。

【特 徴】

- 1. 死荷重を軽減できる中空角形鋼管製品
- 2. 角形鋼管床版橋の性能確認試験(1) 斜角付き角形鋼管床版橋の耐力確認済(2) 角形鋼管床版橋の疲労破壊確認済
- 3. 急速施工が可能
 - (1) 架設直後から重機通行可能
 - (2) 工期短縮
- 4. 狭隘地施工が可能
 - (1) 住宅密集下での狭い作業 スペースでも施工可能
 - (2) 桁下空間を確保できる。

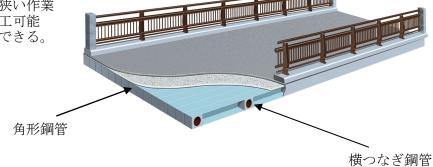


図1 構造図

新技術調査表 (2)

実績件数	東 京 国土交通 その他公共 民	通省: 1 :機関: 15	0件 5件 9件 2件	国土交通省	2特 3試	定技術活 験 フ	パイロット: 用パイロット: ィ ー ル ド: ルモデル事業:	0件 0件 0件 0件	
特許	①有り	2出願中	3 出原	順予定		4無し	(番号:特許37258	92, 3814287 他2件)	
実用新案	1有り	2出願中	3 出原	順予定		④無し	(番号:)	
評価・証明		目日 (報提供システ <i>)</i>) 2 民間開発建設技術(番号:) ・証明年月日 () ・証明機関 () [NETIS] 4 その他 登録年月日: 2006. 2. 13)						
キーワート゛	1安全・安心 2環 境 3ゆとりと福祉 ④コスト縮減・生産性の向上 ⑤公共工事の品質確保・向上 6リサイクル 7景 観 自由記入								
開発目標 (選 択)	①省人化 ②省力化 ③作業効率向上 ④施工精度向上 5耐久性向上 ⑥安全性向上 7作業環境の向上 ⑧周辺環境への影響抑制 9地球環境への影響抑制 (10. 省資源・省エネルギー ①. 出来ばえの向上 12. リサイクル性向上 13. その他								
従来との比較	1 2 3 4 6 7 8 N		20 %) 33 %) .0 %)		呈呈呈呈呈呈呈	式 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(%) 】 (架設 F(%) 】 (部材軽(%) 】 (カレーン糸 】 (簡易が	量化に伴う負荷減) 且立解体不要) 施工性) 施工性、小型重機) ")	

【歩掛り表】 標準・ 暫定

【施工単価等】 橋長14m、幅員3m、パネル使用枚数2、

直接工事費(上部工1橋当り)

				臣 这 工 并 女 (工 时 工	T 1180 / /
	比較項目	単位	従来工法	新規工法	効 果
	七 <u>秋</u> 只	中 仏	ポステンPCホロー桁橋	角太橋	
	工程	日/橋	25	20	20%
省人化		人日/橋	150	100	33%
紋又	材料費	円/橋	2, 411, 500	3, 875, 000	-61%
経済性	工事費	円/橋	2, 447, 250	513, 000	79%
一性	その他	円/橋	162, 622	133, 175	18%
	材工共	円/橋	5, 021, 372	4, 521, 175	10%

【施工上・使用上の留意点】

·支間長16m以下。斜角60°以上。

【参考資料】

・日本道路協会:道路橋示方書・同解説(平成14年3月)・日本道路協会:鋼道路橋の疲労設計指針(平成14年3月)

・日本道路協会:鋼道路橋設計便覧(昭和55年8月) ・日本道路協会:鋼道路橋施工便覧(昭和60年2月)

新技術調査表 (3)

1. 死荷重を軽減できる中空角形鋼管製品

鋼製の角太橋は剛性が高く、PC橋に比べ軽量なため、旧道路橋示方書(昭和31年版)では上部工反力合計が対PC橋で6%低減、現道路橋示方書(平成24年版)では対PC橋で17%低減となる。

支間長15mでPC橋との比較

図2 角太橋とPC橋の上部工反力比較

- 2. 角形鋼管床版橋の性能確認試験
- (1) 斜角付き角形鋼管床版橋の耐力確認済

弾性載荷試験および破壊試験を行い、斜角を有する場合の基本的な挙動ならびに耐力について確認した(「斜角を有する角形鋼管を用いた床版橋の載荷試験」構造工学論文集Vol.53A 2007年3月)。

試験値	最大花	1380. 4	1	
計算值	許容荷重*	規格値	442. 4	1
	降伏荷重**	規格値	752. 1	ŀ
		ミルシート値	984. 1	ŀ
5	1)/2	568	3. 12	2
	1. 84			
	1)/4)		1.40)

*許容荷重は、角形鋼管 1 本あたりの荷重分担率を 0.25 鋼管の支間中央部における上下フランジの応力度が 求めた許容応力度 $(\sigma_a=175N/mm^2)$ となる時の荷重とし 載荷試験の結果得られた 最大荷重は材料強度のミルシート値で評価した降伏荷重 の1.4倍を記録し、実用上最小 と考えられる60°の斜角を有 する場合でも試験体は十分な 耐力を有することを確認した。

表2 各種計算荷重との比較

建 設 局 事業への 適 用 性

検

査

試

験

デ

タ

築

対象橋梁の架設現場が下記の場合

- ・通行止め期間をミニマム化する必要がある(既設橋の下部工再利用等)。
- ・河川の計画高水位と計画道路高に余裕がない(桁高制限)
- 住宅密集地や山間部等の狭隘地である(大型重機の進入不可)。

新技術調査表 (4)

(2)角形鋼管床版橋の疲労破壊確認済

実大定点載荷の疲労試験を行い、設計活荷重に対して十分な疲労耐久性を有することを 確認した。

 (mm^2) È 6 4 100 H 蹈 1111111 S-N線図 図 4

写真1 載荷状況

(右端A~Hは日本鋼構造協会(JSSC)の疲労設計曲線での等級)

支間中央部の角形鋼管の下フランジ面で100N/mm2の応力振幅となるよう1000kNを200万回 繰返し載荷したが、試験体に異常は見られず、疲労破壊しないことを確認。この応力振幅と 繰返し回数はJSSC疲労設計曲線のD等級をクリアするレベル(「角形鋼管を用いた床版橋の 定点載荷疲労試験」鋼構造年次論文報告集 No. 13)。

3. 急速施工が可能

(1) 架設直後から重機通行可能

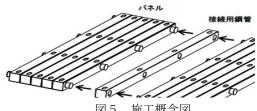


図 5 施工概念図

図5のように接合用鋼管の側面の開口部に隣接 するパネルから突出する横つなぎ鋼管を差し込み 格点部にコンクリートを充填して全体を一体化し その現場接合部のみを取り出し、載荷試験を実施 したところ、十分な強度を有するとともに実用的 であり、せん断力に対して設計計算を行うことが 可能であることを確認した(自走クレーン通行可)。

(2) 工期短縮

従来工法に比べ架設桁設置が不要、軽量のため架設日数減、間詰工も不要となる。 直接工事費(上部工1橋当り)

比較項目	単位	従来工法 ポステンPCホロー桁橋	新規工法 角太橋	効果
準備	日/橋	14	14	-
架設桁設置	日/橋	3	0	100%
架設	日/橋	4	3	25%
間 詰	日/橋	2	0	100%
横締	日/橋	2	3	-50%
計	日/橋	25	20	20%

表 3 工程比較

4. 狭隘地施工が可能

角形鋼管を一本ずつ架設し、現場にて横つなぎ鋼管を 挿入、コンクリートを充填しパネル化を行うことにより 小型重機の使用、狭隘地施工が可能です。

住宅密集下での施工状況 写真 2

新技術調査表 (5) 《実績表》

	局 名	事務所名	工 事 件 名	施	エ	期	間	CORINS	登録 No.
	建設	第六建設	 毛長川護岸整備工事(見沼代用水合流部その3・	平成2	3年1	月~3	月	登録な	L
			橋梁整備工外)						
	建設	第四建設	白子川整備工事に伴う水道橋上部工事	平成2	2年8	月~1	2月	登録な	L
#									
東京	総務	三宅支庁	三宅島歩道橋整備工事	平成2	2年4,	月~6	月	登録な	L
都	1 \\ \tak	++ +A [./. >1 ++ /A		T No.	. .	п.		A - ∨	,
12	下水道	基幹施設再構築	品川区中延三、四丁目付近枝線その3工事 	平成2	2年4,	月~6	月	登録な	L
おけ	建設	第四建設	 白子川整備工事に伴う外山橋上部工事	平成2:	9年4	日~5	日	登録な	1.
る	全 政	NI DELL		1 /30,21	2 1,	/, 0	71	立物、み	
施	建設	第三建設	 妙正寺川整備工事(激特)に伴う無名橋鋼けた	平成2	1年4,	月~6	月	登録な	L
工実			架設工事(その1)						
I	建設	第六建設	毛長川護岸整備工事(見沼代用水合流部その2)	平成2	1年10)月~	12月	登録な	L

【評価等がある場合、その内容】

	発	注	者	エ	事	件	名	施	工	期	間	CORINS	登録 No.	区分
東	平塚市			寺田縄北公園	國整備	事業		平成23年	12月			登録なし		1
京都									\sim 3	平成2	4年3月			
東京都以外の	中部地方團	Ě 備局		平成23年度負 工事	反田維	持管	内歩道整備	平成23年	10月~	~12月	1	登録なし		1
の施工実績	長野市			平成22年度日 道路改良工事		小田	原線	平成23年	7月~	-9月		登録なし	/	1
	新潟県			一級河川堺川 交付金) 橋嶺			備(創造	平成22年	12月~	~		登録なし		1
(国土交通省				文 17 亚 / 1向为	<	.Ŧ			平)	式23年	₹3月			
•	中国地方團	Ě 備局		尾原ダム上派 三所川橋梁			の7他工事	平成22年	10月~	~12月	1	登録なし	/	1
地方自治体・	中部地方團	佟備局		平成19年度青 但沼歩道橋」			道整備事業	平成22年	8月~	~10月		登録なし	,	1
・民間等	区分	1 一般	と 2 打	技術活用パイロ	ット	3 特分	定技術活用パ	イロット	4試	験フィ	ールド	5リサイ	クルモデル	事業

【評価等がある場合、その内容】

NETIS事後評価【活用促進技術として綜合評価B取得 KT-050094-VR】 平成27年10月7日