6. RC 床版薄層増厚補修工法の水張り条件下の疲労耐久性

Fatigue Durability of Thin Layer Thickening Repair Method for RC Slabs under Water Filling Conditions

技術支援課 櫻田 孝、安藤 哲明、〇関口 幹夫

1. はじめに

建設局管理橋梁のうち昭和 48 年以前の道路橋 示方書(以下、道示と略記)¹⁾の基準(昭和 31 年、 39 年など)で建設された鉄筋コンクリート(RC) 床版は、床版厚が薄く鉄筋量が少ないなどの要因 により、重交通路線では早期にひび割れが発生す るなど耐荷性能が劣っていた^{2,3)}。このことから、 交通規制が不要な床版下面補強対策の鋼板接着や 縦桁増設工法などが積極的に進められた。また、 損傷が進み補強が困難な場合では、工期短縮が図 られ死荷重の増加を抑えて耐荷性能を向上できる プレキャストPC 床版などに取替えている⁴。

床版の橋面舗装は、一般都道では概ね15~25年 サイクルで切削打換え(全層打換え)を繰返して 維持管理している。近年の切削打換え工法では、 切削時に床版を過切削させないために防水層より 10mm ほど既設舗装を残して切削し、残りはスクレ ーパーやバックホーの爪などで剥がす仕様⁵⁾とな っている。しかしながら、施工時間に制約のある 夜間工事では、特に床版厚の施工精度が悪い古い 床版において、過切削等により床版厚の減少や写 真-1に示す上鉄筋損傷の実態が存在する。

当センターは、過切削等により床版厚が減少し ている床版や床版上面の砂利化(土砂化)などで 損傷が進行して耐荷性能が劣っている床版を対象 に、床版上面の被りコンクリートを20mm程度切削 して、防水性能を高めた薄層増厚材を設計床版厚 まで回復させる補修や設計床版厚+20mm 程度増厚 補強する新しい薄層増厚工法の検討を行っている。

本稿では、昭和 39 年道示⁶⁾基準の床板厚 190mm の基準床版を 2 体製作し、ゴムタイヤ式輪荷重走 行試験機を使用して輪荷重 160kN 走行によりひび 割れ密度 10m/m²の損傷を与えた。さらに試験体 の上面を路面切削機で 20mm 切削して、セメント系 の薄層増厚材 2 種類を 20mm 舗設後、水張条件下で 輪荷重 160kN 走行の疲労耐久性を検討した。

2. 輪荷重走行試験の概要

(1) 試験体

床版試験体は、昭和 39 年道示の基準に基づいて 設計し、形状寸法と配筋図を図-1 に示す。床版の 形状寸法は、幅 2.8m(支間 2.5m)橋軸方向の長 さ 3.5m床版厚 190mm とし千葉県美浜区内の試験 体製作ヤードで 2 体製作した。

写真-1 過切削による鉄筋損傷

(2) 使用材料

鉄筋は SD295A の D16、D13、D10 で鉄筋の特性値 を表-1 に示す。コンクリートは、やや品質の劣る 材齢 28 日目標強度を 25N/mm² とする生コン(18-8-20-N)を使用した。コンクリートの配合表は表 -2 に特性値は表-3 に示す。

コンクリートの乾燥収縮ひずみは、試験体と同

図-1 試験体の形状寸法

表-1 鉄筋の特性値

種類	降伏応力	引張強さ	弾性係数	伸び
	(N/mm^2)	(N/mm ²)	(kN/mm ²)	(%)
D10	366.1	500.6	174.3	18.6
D13	360.7	501.4	177.4	19.9
D16	361.1	494.3	184.5	18.1

	表	-2	配合表
--	---	----	-----

一一日の	配合表(kg/m ³)							
	W/C	С	W	S1	S2	G	*1	
18-8-20-N	67.0%	239	160	627	269	1004	2.39	
*1:AE減水剤								

材齢	圧縮強度	静弾性係数	ポアソ	引張強度
(日)	(N/mm^2)	(kN/mm ²)	ン比	(N/mm^2)
28	24.6	30.5	0.19	2.1

表-3 コンクリートの特性値

じ室内環境下で 10×10×40 cm供試体のコンタク トストレインゲージ法による測定結果を図-2 に 示す。走行試験は材齢 38 日以降に開始し、試験終 了時(材齢 436 日)の収縮ひずみ量は 339μ、質量 減少量は 230g であり通常の範囲である。

(3) 走行疲労試験方法

輪荷重走行疲労試験は、写真-2のゴムタイヤ自 走式の輪荷重走行装置を使用する。試験体は、図 -3に示す載荷装置の支持桁上に2体連続(試験 体同士の接触面には5mmのゴム板を挿入)して配 置し、床版支間中央をタイヤが約6.5m走行する方 式である。走行荷重は、都内で観測される輪荷重 の最大値に相当する160kN一定とする。

(4) 水張方法

水張の方法は、図-4に示すようにプラスチック 製の目地棒を額縁状に接着剤で設置し、中央横桁 上の床版合わせ面には漏水を最小限にすべく止水 用コーテング材を充填した。また、床版下面にビ

写真-2 輪荷重走行装置(水張試験)

図-3 試験体設置図

ニールシートを設置して漏水を集水するタンクを 設置した。走行試験では、水道水を1日1~2回約 200散水して常に水張状態となるように、タイヤ走 行部以外に湿潤養生用スポンジマットを敷き、ブ ルーシートで覆い乾燥防止対策を行った。

(5) 薄層増厚材の選定

薄層増厚材の選定は、令和2年度に開発中を含 めた10種類について事前評価を行ない、表-4に 示すタイプA~Dの4種類を選定した。これらは 材齢4時間圧縮強度40N/mm²以上、薄層増厚20mm の施工が可能で防水性能の高い機能を有する新材 料である。タイプEは、現行の代表的な増厚材で ある超速硬鋼繊維補強コンクリート(SFRC)であ り、比較のため掲載している。タイプAは米国で 実績の多いレジンコンクリート、タイプBおよび Cは特殊セメント系である。タイプEはスイスで 開発された特殊セメント系の国産品である。平成 5年度は、セメント系のタイプBとCを施工する。

(6) 試験体の切削と増厚材の施工

試験体の切削方法は、野外の土の作業ヤードに 約 200mm 掘り下げた中に試験体を埋め込む形で設 置した。写真-3 に示す小型路面切削機を使用し て写真-4 に示す試験体の長手方向両端部 100mm と吊り金具部を除く面を 20mm 切削した。

増厚施工日は、令和5年8月25日で気温35℃ を超す猛暑日のため、ブルーシートで直射日光を

図-4 水張方法の概念図

写真-3 切削状況

写真-4 20mm 切削完了

	走行試験実施年度	令和6年	令和5年	令和5年	令和6年	—	
\sim	→ 分類	タイプA	タイプB	タイプC	タイプD	タイプE	試験法
項目 (PPC)		ポリエステルポリ マーコンクリート (PPC)	高強度緻密モルタル (ラテックス改質速硬 コンクリート「LMC」)	繊維補強超速硬ポリ マーセメントモルタル (NEXCO仕様)	超緻密高強度繊維 補強コンクリート	超速硬鋼繊維補 強コンクリート	
	材料メーカー(品名等)	日鉄ケミカル&マ テリアル(PPC)	太平洋マテリアル(ス ラブガード)	住友大阪セメント(リフ レモルセットSF)	j-ティフコム施工協 会(j-ティフコム)	各社(SFRC)	
	圧縮強度28d	60N/mm ² 以上	70N/mm ² 以上	40N/mm ² 以上	130N/mm ² 以上	50N/mm ² 以上	
	静弾性係数28d	15~25kN/mm ²	25~35kN/mm ²	26.5 ± 5 kN/mm ²	35~40kN/mm ²	25~35kN/mm ²	JIS A 1149
	曲げ強度28d	20N/mm ² 以上	8N/mm ² 以上	12N/mm ² 以上	35N/mm ² 以上	8N/mm ² 以上	JIS A 1171
	割裂引張強度28d	6N/mm ² 以上	5N/mm ² 以上	3N/mm ² 以上	13N/mm ² 以上	5N/mm ² 以上	JIS A 1113
	付着強度28d	2.1N/mm ² 以上*	2.1N/mm ² 以上*	2.1N/mm ² 以上*	2.1N/mm ² 以上*	2.1N/mm ² 以上*	建研式
	乾燥収縮28d	-50 µ 以下	<i>-</i> 300 <i>μ</i> 以下	<i>-</i> 300 μ 以下	-200 <i>μ</i> 以下	-400 <i>μ</i> 以下	JIS A 1129-2
	透水試験28d	1.0g 以下**	3.0g 以下	1.0g 以下	1.0g 以下	7.0g 以下	JIS A 1401
	最小施工厚さ(mm)	20	20	10	20	50	
加工	施工実績	海外で有	試験施工	有	有	多数有	
条	薄層(20mm)で施工可能	0	0	0	0	×	
件	防水性能が高い	0	0	0	0	Δ	
等	早期交通開放が可能	0	0	0	0	0	
評価	耐荷力と疲労耐久性	0	0	0	0	薄層対応不可	
ηш	薄層総合評価	0	0	0	0	×	

表-4 薄層増厚材の選定結果

*:コンクリート母材、**:JIS A 6909 透水試験方法

避けて施工した。

増厚材の施工前に切削面を清掃後に写真-5 に 示すエポキシ系の含浸プライマーをローラー刷毛 で塗布し、次に打継用エポキシ接着剤を塗布して 増厚材を施工する。増厚材の製造は、プレミック スタイプの材料を強制練りミキサーで練り混ぜて 製造した。各配合はメーカー仕様、施工はメーカ ーおよびメーカーの協力会社が行った。増厚材の 特性値は表-5 に示すとおり材齢3日の圧縮強度 はいずれも 40 N/mm²以上である。タイプBは、鋼 繊維入りラテックス改質速硬コンクリート系の高 強度緻密モルタルで28日圧縮強度は115.5N/mm²、 静弾性係数は 45.2kN/mm²、割裂引張強度は 8.1N/mm²であった。一方、タイプCは NEXCO 仕様 (早期強度発現と弾性係数を低く抑えている)を 満足するビニロン繊維入り超速硬ポリマーセメン トモルタルで28日の圧縮強度は49.8N/mm²、静弾 性係数は 24.4kN/mm²、割裂引張強度は 3.5N/mm²で あった。

タイプBの施工は、鋼繊維入りで粘性が高く、 また高温のため硬化が速く、締固めに写真-6 に 示す簡易な振動締固め機を使用したが写真-7 に 示す凹凸に仕上がった。養生後に写真-8 に示す

	材齢	圧縮強度	静弾性係数	ポアソ	引張強度		
	(日)	(N/mm^2)	(kN/mm^2)	ン比	(N/mm^2)		
	3	54.0	33.9	0.16	4.87		
タイプB	28	115.5	45.2	0.20	8.11		
	38*	121.5	46.7	0.21	8.64		
	3	43.9	22.8	0.25	3.23		
タイプC	28	49.8	24.4	0.23	3.55		
	38*	55.1	25.6	0.23	3.29		
注)*:走行試験開始							

表-5 薄層増厚材の特性値

写真-6 タイプBの振動締固め状況

写真-7 タイプBの仕上げ状況

写真-8 タイプBの研磨機再仕上

写真-9 タイプCの締固め仕上状況

1	THE		1	
That	unk I II	N. MORA	10	
	SIL.	TA		
		1		
41	1	0		-

写真-5 プライマー(無色)と打継接着剤塗布

表面不陸成形用ダイヤモンド研磨機を使って設計 厚 20±1mm に仕上げ直した。一方、タイプCは、 ビニロン繊維入りでタイプBほど粘性が高くない ため、写真-9 に示す簡易な振動締固めでスムー ズに施工できた。

予備載荷の結果

(1) ひび割れの状態

薄層増厚補修時の母床版の損傷レベルは、ひび 割れ密度 10.0m/㎡とした。この損傷レベルは、東 京都建設局の「橋梁の定期点検要領(案)令和3年 12月版^{7」}」のひび割れ損傷レベルの「ランクd」 に相当する。走行前0回における版中央点の静的 載荷におけるひび割れ発生荷重は、いずれも100kN で目視観察により確認した。走行1回、100回、 1,000回、2,000回におけるひび割れ密度は図-5、 ひび割れ図は図-6に示す。

ひび割れの発生進展は、いずれの試験体も版中 央にほぼ偏りなく発生・進展した。また、走行面に

図-5 予備載荷のひび割れ密度の推移

はひび割れは発生しなかった。タイプB用は10.95 m/m^{*}、タイプC用は10.21m/m^{*}で目標に達した ため予備載荷を終了した。

(2) たわみおよび鉄筋ひずみ

予備載荷の床版中央点の活荷重たわみと計算値 の関係を図-7に示す。たわみの計算は、三次元弾 性論に基づく厚板理論の多層版解析法によった⁸⁾。 ひび割れの発生した RC 床版は、剛性の低下した均

タイプC用

(b)

図-6 予備載荷の下面ひび割れ図(見下げ図)

表-5 たわみ計算結果(多層版解析)

Ec	ま [°] アハルト	n-Ec/Ec				3	支間(mr	n)/たわ	み(mm)			
(N/mm^2)		n-es/ec	0	250	500	750	1000	1250	1500	1750	2000	2250	2500
28,000	0.18	n=7	0.000	0.239	0.467	0.670	0.828	0.898	0.828	0.670	0.467	0.239	0.000
13,300	0.20	n=15	0.000	0.500	0.976	1.400	1.730	1.876	1.730	1.400	0.976	0.500	0.000
6,450	0.20	n=31	0.000	1.031	2.013	2.886	3.567	3.867	3.567	2.886	2.013	1.031	0.000

質弾性体と近似的に見なせるとして計算する。こ こでは、床版の剛性を便宜的に弾性係数比(n=Es: 鉄筋の弾性係数/Ec:コンクリートの弾性係数)と して取り扱い、通常は n=7(全断面有効時)、n=15 (ひび割れ発生直後)、n=31(ひび割れが十分に発 生した引張断面無視相当)と仮定する。160kN載荷 時のたわみ計算結果を表-5に示す。

図-7 の走行前 0 回の荷重 0~60kN 区間は、概 ね全断面有効の計算値 n=7 に一致している。1 回 走行では、ひび割れ断面の計算値 n=15 に一致する。 2,000 回では、ひび割れ密度約 10m/㎡でひび割れ が十分に発生した状態の n=31 の計算値に良く一 致している。なお、予備載荷の 2,000 回では、貫 通ひび割れは確認されていない。

(a) タイプB用

主鉄筋方向のたわみ分布を図-8 に示す。タイ プB、Cいずれもほぼ同じ値で、左右対称の分布 形状である。走行1回の分布は、n=15計算値の分 布と一致し、1,000回と2,000回は、n=31計算値 の分布と概ね一致している。

主鉄筋のひずみ分布を図-9 に示す。たわみ分 布は、いずれもほぼ同じたわみ量であったが、主 鉄筋のひずみ分布では、タイプC用は、タイプB 用に比べて載荷点直下(S4)のみ約 200 µ 大きい値 で推移している。大きい理由は、タイプCのS4 位 置に 0 回から主鉄筋直角方向(走行ライン)のひ び割れが発生しており、ひび割れの影響と推察で きる。設計輪荷重 100kN 換算の応力度は、100~ 125N/mm²であり、ほぼ許容応力度程度である。

図-8 予備載荷橋軸直角方向のたわみ分布

4. 水張走行試験結果

(1) 破壊時走行回数と破壊形式

破壊時走行回数は、タイプBは11,255回、タイ プCは26,450回でタイプBの約2倍の疲労耐久 性を示した。破壊形式は、いずれも押し抜きせん 断破壊であったが、通常のRC床版のようにタイヤ 接地面が明確に10~20mm程度押し抜かれる現象 に対して、タイプBの走行面は、鋼繊維入りのた め5mm程度窪んだが明確な押し抜きは生じなかっ た。下面には明確な押し抜きせん断破壊による剥 離が確認された。一方、タイプCは、ビニロン繊維 入りで弾性係数がタイプBに比べ小さく、曲げ強 度がタイプBに比べ大きいためか走行面は数ミリ 凹んだが明確な押し抜きによる段差は生じなかっ た。

(2) 下面ひび割れ発生状況

薄層増厚後の走行回数と下面ひび割れ密度の関係を図-10に示す。破壊時のひび割れ密度は、タ

イプBは 16.29m/㎡、タイプCは 18.0m/㎡でタ イプBに比べやや大きいが通常の範囲であった。

下面のひび割れの発生進展状況は、図-11(a、 b)に示すように版中央にほぼ偏りなく発生・進展 した。また、破壊後の押し抜きせん断破壊による 上面走行部の剥落部をハッチで描いており、図-11(c)のタイプBは、図-11(d)のタイプCに比べ 剥離面積が大きくダメージが大きい。

図-10 走行回数とひび割れ密度の関係

(a) タイプB下面ひび割れ

(c) タイプB上面ひび割れ

(d)タイプC上面ひび割れ

(b) タイプC下面ひび割れ

図-11 破壊後の上・下面のひび割れ図

写真-10 タイプBの漏水状況

(3) 漏水状況

走行面直下の剥離に先行して発生した貫通ひび 割れは、タイプBの方が速い。下面への漏水は、タ イプBは 10,000 回あたりから写真-10 に示すと おり少量発生した。一方、タイプCは、破壊後にお いてもひび割れからの漏水は生じなかった。

(4) たわみの推移

床版中央点の薄層増厚前から薄層増厚後の破壊 までの活荷重たわみの推移を図-12に示す。走行 1回のたわみ初期値は、いずれも1.6mm、2,000回 は3.8mm で増厚施工直後は、ほぼ増厚前と変化が ない。弾性係数の大きいタイプBの方がたわみは 小さく推移したが、走行10,000回以降でたわみが 急激に増加して破壊した。一方、タイプCは、タイ プBに比べ弾性係数が小さいことからたわみはタ イプBに比べて大きく推移し、約20,000回以降に たわみが急激に増大して破壊した。

図-12の凡例の基準乾燥は、薄層増厚の母床版 (基準床版)の乾燥条件下の走行疲労試験結果で あり、約5万回で破壊している⁹⁾。また、今後予定 している基準床版の水張試験(基準水張)の推定 値を参考のため併記した。一般的に水張条件下の 走行疲労耐久性は、1/10~1/100程度に低下すると 考えられているので、試験結果の11,255~26,450 回は、基準乾燥5万回の1/5~1/2であり、防水性 能の高い薄層の効果によって疲労耐久性が改善で きたものと推察できる。

たわみの計算は、三次元弾性論に基づく厚板理 論の多層版(薄層+RC床版の2層版モデル)解析 法を用いた⁸⁾。ひび割れの発生したRC床版は、剛 性の低下した均質弾性体と近似的に見なせるとし て計算している。増厚後1回走行のたわみ実測値 と一致する薄層の見かけの弾性係数は、床版本体 の弾性係数比をn=31に仮定したうえで、薄層の表 -5に示した実測弾性係数を考慮して図-13に示

走行1回から8,500回までのたわみ分布は、タ イプBおよびタイプCいずれもほぼ同一のたわみ 値で分布している。タイプBの中央は、11,255回 で押し抜きせん断破壊後によりたわみが15mmに 急増している。一方、タイプCは、1回から14,000 回までn=33の計算値をやや上回った状態のたわ み分布である。その後26,450回で押し抜きせん断 破壊したものの押し抜きの範囲が狭くたわみの最 大値は、約9mmに増加した。

(5) 鉄筋ひずみの推移

薄層増厚後の主鉄筋(橋軸直角)のひずみ分布 を図-14に示す。いずれの試験体もたわみ同様に ほぼ左右対称である。タイプBに比ベタイプCは、 予備載荷の初期値からひび割れの影響で約 200 μ 大きく、その影響が薄層増厚後も継続して推移し

ている。また、設計輪荷重 100kN 換算の応力度は、 予備載荷時から大きく増加することなく、ほぼ許 容応力度程度である。

下側配力筋のひずみ分布を図-15(a)に示す。タ イプBに比ベタイプCは、予備載荷の初期値から ひび割れの影響で約 200 µ 大きかったが、増厚時 900 µ 以降に約 1,100 µ に上昇した。その後は低下 傾向となりほぼ同一の値で推移している。

上側主鉄筋ひずみの推移は図-15(b)に示す。増

(a) タイプB上面

(b) タイプB A-A 断面

(c)タイプC上面

(d) タイプC A-A 断面 写真-11 橋軸方向切断面

(a) タイプB B-B 断面

(b) タイプB C-C 断面

(c)タイプC B-B 断面

(d) タイプC C-C 断面 写真-12 橋軸直角方向切断面

厚後タイプBは、引張側へ 200 μ 増加し、その後変 化がなく、破壊時には引張ひずみで終了している。 一方、増厚Cは、増厚後ひずみ値は 0 から引張側 に 130 μ 増加する変化が見られた。

(6) 切断面のひび割れ

1) 上面走行ライン切断面のひび割れ

破壊後に試験体内部のひび割れの状態を調べる ため図-16に示す6分割にダイヤモンドカッター により切断した。写真-11(a)~(d)は、タイプB の走行面とA-A切断面の状態である。走行面の写 真-11(a)および(c)の押し抜きせん断破壊の橋軸 方向の領域は、タイプBは床版中央でタイヤ幅方 向の範囲が狭く、タイプCはタイヤ幅方向の範囲 がやや広いが、通常のRC床版走行面に発生する円 弧状のひび割れが少ない。その要因は、いずれの 薄層増厚材も鋼繊維入りB、ビニロン繊維入りC であり、繊維補強による曲げ強度や引張強度が普 通コンクリートに比べ高い性質が影響しているも のと推察される。写真-11(a)の走行ライン直角の 主鉄筋方向の幾つかのひび割れは、上主鉄筋間隔

(300mm)位置に発生していることから貫通ひび割 れと考えられるが、防水性能が高い材料特性を持 っているため漏水に直結していない。

写真-11(b)、(d)の A-A 切断面では、ほぼ主鉄 筋間隔(150mm)の貫通ひび割れに囲まれた梁状化 したブロックが確認できる。また、上鉄筋位置に 水平ひび割れとかぶりコンクリートが骨材化(砂 利化)が確認できる。

2) 主鉄筋方向の切断面のひび割れ

写真-12(a)、(b)のタイプBの押し抜きせん断 破壊の橋軸直角方向の領域は、タイヤ幅から約40 度の角度で押し抜きせん断破壊面が確認できる。 上鉄筋位置に水平ひび割れとかぶりコンクリート の骨材化(砂利化)が確認できる。

一方、写真-12(c)、(d)のタイプCの押し抜き せん断破壊面もタイプB同様にタイヤ幅から約40 度の角度で破壊面が確認できるが、写真-4(d)の 破壊面は、ひび割れ幅が狭く、ダメージが少ない。 上鉄筋位置に水平ひび割れとかぶりコンクリート の骨材化(砂利化)が確認できるが、タイプBに比 べ損傷の程度は少ない。

3. 劣化度の検討

RC 床版の劣化度の評価は、松井¹⁰⁾の式(1)を適 用する。なお、引張り無視の状態は、ひび割れが十 分に発生・進展した状態の弾性係数比(n=31)と仮 定し、健全度ランク d 相当のひび割れ密度約 10m / m²に相当する予備載荷 2,000 回時の計算結果を 表-6 に示す。タイプB用劣化度は 0.93、タイプ C用は 0.93 である。いずれも劣化度 1.0 をやや下 回っている状態である。

$$D_{\delta} = \frac{(W - Wo)}{(Wc - Wo)} \cdot \cdot \cdot \cdot \ddagger(1)$$

ここに、*D*₈:劣化度

W:実測活荷重たわみ(mm)

Wo: 全断面有効のたわみ計算値(mm)

Wc: 引張無視のたわみ計算値(mm)

走行回数と劣	化度およびひび	び割れ密度の関係を
図-17 に示す。	劣化度が 1.0	となる走行回数は、

表-6 予備載荷の劣化度

試験体		タイプB	タイプC	備考	
活荷重たわみ	1回	1. 778	1.834	走行	
W (mm)	2000回	3. 671	3.672	走行	
たわれ計算値	Wo (mm)	0.898		n=7	
たわか計昇恒	Wc(mm)	3.867		n=31	
劣化度	D_δ	0.93	0.93	2000回吐	
ひび割れ密度	10. 21	10.95	2000凹时		

図-17 走行回数と劣化度・ひび割れ密度

タイプB、Cいずれも約 2,000 回であり予備載荷 の 2,000 回は妥当な値となっている。東京都の現 行の「橋梁の点検要領(案)令和 3 年度版」⁶⁾の健 全度ランク d のひび割れ密度 10~15m/m²は、妥 当な閾値であることが確認できる。

図-18 接着強度試験箇所(タイプC)

図-19 接着強度

(a) タイプB(No. 4)

(b) タイプC(No.3)写真-13 引張試験の破断面

6. 接着(付着)強度と防水性能試験Ⅱ

(1) 接着(付着)強度

現行のジェットセメントを用いる上面増厚工法 (SFRC:鋼繊維入り超速硬コンクリート)では、床 版上面切削時に有害なマイクロクラックが発生す る脆弱部が残ることから、脆弱部をショットブラ スト(SB)により研掃することで接着(付着)強度 を確保している。今回は令和3年度に実施した増 厚材の材料特性試験¹¹⁾において、含浸タイプのエ ポキシ系プライマーと打継用エポキシ接着剤を組 合わせることで、ショットブラスト「有り・無し」 に明確な差がなかったので、施工時間短縮を目指 してショットブラストを省略している。

図-18は、走行前(薄層施工後材齢3日)と破 壊後(材齢 400 日)の建研式による接着強度試験 箇所を示す。走行前の試験箇所は、走行に影響し ない主桁近傍の床版端部とした。破壊後は、走行 部の剥離箇所を除く箇所とした。図-19は接着強 度(N/mm²)の試験結果を示す。引張破断面は写真 -13に示すとおりすべて床版母材であった。走行 前のタイプBは 1.0~2.0N/mm² 平均 1.4N/mm²とば らついている。タイプCは、1.1~1.5N/mm² 平均 1.3N/mm²でばらつきは少ない。いずれも床版母材 の割裂引張強度 2.1N/mm²以下であり、含浸タイプ のプライマーを使用しているがショットブラスト を省略している影響が考えられる。一方、走行試 験終了後の接着強度は、タイプBは平均 1.6N/mm² でばらつきは少ない。タイプCは平均1.3N/mm²で ばらつきは大きい。母床版の割裂引張強度を上回 ったのは、タイプCの1か所のみであったことか ら、ショットブラスト省略の影響については、別 途水張試験による検討が必要である。

(2) 防水性能試験Ⅱ¹²⁾

走行試験終了後に床版上面増厚部で浮きのない 部分から直径 100mm のコアを各 3 本採取して防水 性能試験Ⅱ(タイプB材齢 104 日、タイプC材齢 103 日)の結果を図-20 に示す。タイプBの B-1、 B-2 は、24 時間 0.5MPa の加圧で注水総量約 32m1 全量が減水(浸透)した。写真-14(a)タイプB(B-

図-20 防水性能試験Ⅱ

(a) タイプB(B-2)

(b)タイプC(C-2) 写真-14 防水性能試験Ⅱの破断面浸透状況

2)のコア破断面の浸透状況に視られるとおり、床 版切削面のプライマー位置まで浸透(黄緑の蛍光
色)していることが確認できる。3試料のうち2試料は不合格1試料合格であった。

タイプCは、図-20 に示すとおり 24 時間で減 水量は 3 試料とも約 5ml (約 15%)と少なく、写真 -14(b)タイプC (C-2)に示すとおり増厚内部への 浸透がほとんどないことが確認でき 3 試料とも合 格である。

7. まとめ

薄層増厚タイプB(鋼繊維補強ラテックス改質 高強度緻密モルタル)とタイプC(ビニロン繊維 補強超速硬ポリマーセメントモルタル)の水張走 行疲労試験の検討結果について、以下の知見が得 られた。

(1)タイプBの施工性は、鋼繊維入りで粘性が高く、夏季高温下では簡易な振動式仕上げ機使用でも不陸が生じて、厚さが 5~20mm 程度大きく仕上がる。養生後に研磨機で所定の 20mm厚さに修正する必要性が生じた。一方、タイプ

Cは、粘性がタイプBほど高くないことから 所定の厚さに容易に施工できた。

- (2)破壊時走行回数は、タイプBは11,255回、タ イプCは26,450回でタイプBの約2倍の疲労 耐久性を示した。タイプCの疲労耐久性が優 れていた理由は、防水性能が高く弾性係数が 床版に比べやや小さく、増厚部への応力集中 が少ないことが想定される。破壊形式は、いず れも押し抜きせん断破壊であった。
- (3)通常の RC 床版ではタイヤ走行面が明確に 10 ~20mm 程度押し抜かれて段差が発生するのに 対して、タイプBの走行面は、鋼繊維入りのた め 5mm 程度窪んだが明確な押し抜きによる段 差は生じなかった。一方、タイプCは、ビニロ ン繊維入りで弾性係数がタイプBに比べ小さ く、曲げ強度がタイプBに比べ大きいためか 走行面は数ミリ凹んだが明確な押し抜きによ る段差は生じなかった。なお、いずれも下面に は押し抜きせん断破壊の剥離が確認できた。
- (4) いずれも走行面に明確な貫通ひび割れは発生 しなかったが、タイプBは10,000回あたりか ら走行面に剥離が発生進展し、貫通ひび割れ から漏水が少量確認された。タイプCは押し 抜きせん断破壊後であっても漏水は発生しな かった。
- (5) 薄層増厚材の接着強度は、走行前および走行 破壊後いずれの状態でも約 1.3~1.6N/mm² で あり、床版母材の引張強度 2.1N/mm²の約 70% 程度であった。破断面はすべて母床版であっ たことからショットブラストを省略してエポ キシ系含浸プライマーと打継用エポキシ接着 剤を併用する仕様では、切削時マイクロクラ ックによる接着強度低下の影響を十分に改善 する効果は期待できない。今後ショットブラ ストの影響については、水張試験で確認する 必要性がある結果となった。
- (6) 防水性能試験Ⅱは、タイプBは透水し不合格、 タイプCは不透水で合格であった。

8. あとがき

令和6年度は、薄層増厚材タイプA(ポリエス テルポリマーモルタル:PPC)、タイプD(超緻密高 強度繊維補強モルタル:J-ティフコム)の水張試 験を行って、4 種類の薄層増厚材の疲労耐久性を 評価することにより、都道に最適なタイプを絞り 込む予定である。

参考文献

- 1) (社)日本道路協会:道路橋示方書·同解説(昭和48年2月)
- 2) 国広哲男(1968):道路橋床版の問題点、橋梁と基礎、Vol.2、No.7、1-5
- 3) 太田実(1970):床版の破損と対策、橋梁と基礎、Vol.4、No.10、30-33
- 4) 関口幹夫(2020): 第2章 総論コンクリート床版の課題と対策、橋梁と基礎、Vol. 54、14-17
- 5) 東京都建設局:橋面舗装設計施工要領(案)、平成21年12月
- 6) (社) 日本道路協会: 鋼道路橋示方書(昭和39年6月)
- 7) 東京都建設局:橋梁の点検要領(案)、令和3年12月
- 8) 関口幹夫、佐々木俊平(2007): IIS による各種床版の健全度の評価、平 19. 都土木技術センター年報、229-240
- 9)時吉賢、前田洋平、関口幹夫、櫻田孝(2023):昭和 39 年道路橋示方書基準の RC 床版厚 160 mmと 190 mmの疲労耐久性、 令 5.都土木技術支援・人材育成センター年報、63-75
- 10) 松井繁之、前田幸雄(1986): 道路橋 RC 床版の劣化度判定方法の一提案、土木学会論文集、第 374 号、419-426
- 11) 笹木俊一、前田洋平、関口幹夫、大石雅登(2022): RC 床版の薄層増厚補修における防水性能を有した増厚材の材料特性、令4. 都土木技術支援・人材育成センター年報、71-76
- 12) (社) 日本道路協会「道路橋床版防水便覧」、平成19年3月