平 28. 都土木技術支援・人材育成センター年報 Annual Report C.E.S.T.C., TMG 2016

1. 強震動を受けた地盤のS波速度低下に関する一考察

Decrease of S-wave Velocity in Ground during Strong Motions

技術支援課 栗塚一範、小川 好

1. はじめに

建設局では、道路橋梁、河川構造物など重要構造物 全 19 地点において、強震観測を実施しており、デー タの蓄積を行っている(資料編1「平成27 年度の強震 観測記録」)。このうち、江戸川北工区敷地内の強震 観測施設において、地震時の地盤挙動の把握及び新中 川に架かる上一色橋橋脚上で観測している強震記録の 補足を目的として地中強震計による観測を 2005 年度 から実施している。地中強震計は、深さ GL-12.5m、 GL-40m の位置に設置されているが、基盤層(ここでは、 GL-40m 程度を想定)より浅い比較的軟弱層の位置に設 置している施設は全国的に少ない状況である。

一方、強震動を受けた地盤は大きなひずみが生じ、 そのひずみが非線形性を帯びるとともに剛性率が低下 することが知られている。しかし、基盤層など比較的 深く硬い層から地表までに到達する実際の地震波記録 を基に検討された報告は多い^{1,2)}ものの、基盤層より浅 い軟弱層から地表までの間で検討された例は多くない ようである。このような条件で検討された結果は、強 震動を受けた地盤の物理的状態の解明に繋がるととも に、今後の地震被害想定での地盤増幅率や卓越周期の 指定など広く役立つものと思われる。

今回、地震時の地盤の剛性率(ここでは S 波速度で 評価)が、それを受ける前の剛性率に対しどの程度低 下するか、強震記録による実測値及び地震応答解析に よる解析値の両面から比較検討した結果を報告する。

2. 検証方法

地盤の剛性率は以下の式によって表される。

 $G = \rho V_s^2 \qquad \dots(1)$

ここで、Gは剛性率、 ρ は密度、 V_s はS波速度である。

(1)式より、地盤の剛性率は S 波速度の 2 乗に比例するため、地震動を受ける前と地震時の地盤の S 波速度を求め、地盤の剛性率低下を評価することとした。

地震を受ける前のS波速度は、2005年3月に地中強 震計を設置する際、そのボーリング孔を利用して PS 検層を実施していることから、その結果を用いること とした。

地震時の S 波速度は、東京都大手町で観測された大 中小 3 ケースの規模の地震を対象とし、地表面の強震 計 GL=0m、地中強震計 GL-12.5m、GL-40m の 3 地点で得 られる強震記録を用いて検討することとした。地震時 の S 波速度の求め方を以下の(1)、(2)に示す。

(1) 地震時のS波速度(実測)

ある地震波の波長λは(2)、(3)式で表される。

$$\lambda = \frac{V_s}{f} \qquad \dots(2)$$

$$\frac{L}{\lambda} = \frac{(\theta_A - \theta_B) + 2n\pi}{2\pi} \qquad \dots(3)$$
(2)、(3)より、
$$\frac{L}{V_s} = \frac{(\theta_A - \theta_B) + 2n\pi}{2\pi f} \qquad \dots(4)$$

$$V_s = 2\pi L \cdot \frac{f}{(\theta_A - \theta_B) + 2n\pi} \qquad \dots(5)$$
ここで、 λ は波長、 V_s はS波速度、 f は振動数
 θ_A はA地点の位相、 θ_B はB地点の位相
Lは2地点間の距離、 π は円周率、
nは0または正の整数である。
強震計実測データから得られた加速度履歴を

ーリエ変換(FFT)すると、変換後の複素形式から位相

高速フ

 θ を $\pm \pi$ の範囲で算出することができる。ここで、あ る A 地点から B 地点に向かって地震波が進行した際の 位相差は、進行波の波動方程式より、 $f\left(\frac{x}{V}-t\right)$ で表 されることから、A の方が B より時間的に前の波形と なっているため、($\theta_{A} - \theta_{B}$)として表すことができる。 この位相差とそれに対応する振動数の関係から傾き $\frac{(\theta_A - \theta_B) + 2n\pi}{f}$ を求め、これを(5)式に当てはめるこ

とで、S波速度を算出した。

なお、計算に当たっては以下の2点に留意した。

- ① 地中の地震波には地表からの反射波が含まれるた め誤差があるが、今回はそれらを含めて振動数ごと の位相差を最小二乗法により近似して求めた。
- ② そもそも非線形である大ひずみでの振動をフーリ エ解析という線形理論によって解析していることに 異論を唱えるところがあるかもしれない。しかし、 非線形の振動を厳密に解く方法がないこと、類似の 文献^{1,2)}でも同様の方法を用いていることから、フー リエ解析による位相差から伝搬速度を求めた。
 - (2) 地震時のS波速度(解析)

(1)実測データから求めた S 波速度は、地震前の S 波速度が先に受けた地震などの影響を受けている可能 性は否定できないため、元の地盤条件を一定とし実測 を補足することを目的として地震応答解析を行った。 地震応答解析には、材料非線形性を考慮する観点から、 等価線形化手法を用いた。等価線形化手法を用いた地 震応答解析プログラムとしては Schnabel らにより開 発された SHAKE³⁾が有名である。また、SHAKE に改良を 加えた DYNEQ⁴が吉田らによって公開されており、イン ターネット上で自由にダウンロードできるため、手軽 に利用できるといった特徴がある。筆者らは DYNEQ の 適用性について検証を行っており⁵⁾、結果の妥当性を 確認している。これらを踏まえて今回は等価線形化手 法として、DYNEQ を用いることとした。解析条件は後 述する 3. (1) 地震ケース、(2) 地盤条件と文献 5のとお りである。

6. 検討条件

(1) 地震ケース

検討する地震ケースを表-1 に示す。用いる強震記 録は、東京でも比較的大きな揺れを観測し未曽有の大 災害となった 2011 年(平成 23 年)3月11日の東北地 方太平洋沖地震と、これよりも比較的小さな揺れを観 測した 2012 年 (平成 24 年) 5 月 29 日に千葉県北西部 で発生した地震(以下、千葉北西部での地震)、2011 年(平成 23 年) 3 月 15 日に東京湾で発生した地震 (以下、東京湾での地震)の3ケースとした。

各ケースの GL-40m における強震波形を図-1~3 に 示す。横軸は強震を検知してからの記録時間を示す。 なお、水平成分(ここでは南北方向)の主要動を対象 の地震波とし、表面波と思われる強震記録の後部分は 除外した。最大加速度は、Acc90 が約 90cm/s²、Acc17 が約17cm/s²、Acc5 が約5cm/s²である。

衣一 地長り一人						
ケース	Acc90	Acc17	Acc5			
地震名称	東北地方 太平洋沖 地震	千葉北西部 での地震	東京湾での 地震			
地震	2011/3/11	2012/5/29	2011/3/15			
発生時刻	14:46:18	1:36:47	4:59:47			
震央	三陸沖	千葉県北西部	東京湾			
深さ(km)	24	64	23			
マク゛ニチュート゛Mj(Mw)	(9.0)	5.2	4.1			
大手町の震度	5強	3	3			
最大加速 GL=0m	198.0	36.5	12.1			
度実測値 GL-12.5m	73.3	14.4	5.2			
(cm/s^2) GL-40m	89.6	16.7	5.0			

Mj は気象庁マグニチュート, Mw はモーメントマグニチュート

(2) 地盤条件

当該地点の地盤条件を表-2 に示す。土質区分及び N 値は地中強震計設置付近の地盤における既往の調査 結果⁶⁾を、S 波速度は地中強震計設置時のボーリング 孔を利用して PS 検層を実施した結果である。その他 諸条件は文献⁵⁾によった。地表から深度 8m 程度までは N 値が小さく砂とシルトの比較的軟弱な地盤である。 深度 8m を超えるあたりから N 値が大きくなり砂層が 大半を占める。解析では堅硬な層が見られる GL-40m を基盤層とし、地震波の入力位置とした。

(3) 強震計

強震計の位置を図-4に、性能を表-3に示す。

図-4 地中強震計位置図(江戸川北エ区)

表-3 地中強震計の性能

型式	JEP-4B3
加速度計	サーボ型
測定範囲	$\pm 20 \mathrm{m/s^2}$
分解能	$1 \times 10^{-6} \text{m/s}^2$
周波数特性	DC~450Hz
外形	$\phi 90 \times 540 \mathrm{mm}$
質量	約 15kg

強震計は SMAC-MDU を使用している。

地表面検出器の型式は「JEP-4A3」であり、性能 は、上記の加速度計・測定範囲・分解能・周波数特性 と同様である。

-										
層 No.	層厚 (m)	下限深度 (m)	土質 区分	S波速度 (m/s)	N値	有効拘束圧 ^(kN/m²)	層区分	密度 (g/cm ³)	動的変形 特性	備考
<u> </u>			<u>+ 1</u>			(,		(8, 6)	田線名	← GL=0m強震計
1	0.5	0.5	表土		-	-			2	
2	1.5	2.0		120	3	35			9	←地下水面
3	1.0	3.0	砂	120	11	24			10	201770
4	1.0	4.0			5	39	油建屋		19	Í
5	1.0	5.0			5	39	冲傾唐		19	
6	2.0	7.0	砂質		2	55			20	
7	0.5	7.5	シルト		18	63			12	
8	0.5	8.0		170	18	63			12	
9	4.0	12.0			50	86			30	
10	0.5	12.5			41	102			31	← GL-12.5m强震計
11	0.5	13.0			41	102		1.8	31	[
12	3.5	16.5	砂		50	118			31	1
13	4.0	20.5	-		20	149			31	1
14	4.0	24.5		250	18	180			31	[
15	4.5	29.0			14	220	洪積層		32	ľ
16	1.0	30.0			5	227			43	ľ
17	3.0	33.0	シルト	210	5	243			48	
10	1.0	24.0	質粘土 210	05	243			43) I	
10	1.0	34.0		200	20	207			43	ł
19	4.0	38.0	砂	290	38	282			32	ł
20	2.0	40.0			50	314			33	← GI-40m強震計
21	基盤層			500				2.0	1	

表-2 地盤条件

(4) PS 検層概要

GL-40m のボーリング孔を利用して PS 検層を実施した。S 波については、地表に設置した板を機械式ハンマーにより左右交互に打撃することで発生させた。PS 検層概念図を図-5に示す。

4. 検討結果

(1) 位相差と振動数の関係

3 ケースの地震発生時における 3 箇所の強震計実測 データ(GL=0m、GL-12.5m、GL-40m)より、位相差を 用いて S 波速度を求めた。対象とする振動数は 10Hz までである。S 波速度を算出する具体的な手順の例を 図-6 に示す。

- 2.(1)のとおり強震時に記録された加速度履歴をフ ーリエ変換したものから算出した 2 地点間の位相 差と振動数の関係をグラフ化する。
- ② 1 次線形の傾きを求めるため、位相差が負のものについて、その位相差に+2π加える。
- ③ GL=0~GL-12.5m 及び GL-12.5~GL-40m の地震波到 達時間を PS 検層結果を基に計算したところ約 10Hz 以下では(2)~(5)式の n が 0 であると考えられる ことから、10Hz を一つの解析範囲とみなした。切 片を 0 とした時の仮の 1 次線形において大きくば らつく位相差(ここでは、±πを超えるもの)を それぞれ仮定した線形に近づくように±2πする。

この傾きをもって前述 2. (1)の(5)式に当てはめ、S 波速度を算出する。

(1)

図-6 S 波速度計算手順の例

位相差と振動数の関係を図-7~図-12 に示す。全 てのケースにおいて、短周期(高振動数)になるほど 位相差が大きくなる。両者の関係を最小二乗法で近似 した時の寄与率 R²は Acc90 が 0.8 程度と相関が良いが、 Acc5 は 0.5 程度とやや相関が落ちる。これは、③の手 順を踏んだ時に傾きの変化が大きく、補正したにも関 わらず外れ気味にプロットされたためである。しかし、 全体的に相関はあると言えることから、この傾きをも ってS波速度を算出することとした。

Acc5 GL-12.5~GL-40m を除くケースにおいて、約 2Hz までの長周期(低振動数)側における位相差が0 付近に集まる傾向が見られた。Acc90においては震源 が比較的遠いことから表面波を拾っている可能性があ るが、Acc17、Acc5 では震源が近くその可能性が低い と考えられる。長周期側になるほど1波長に対する位 相差が微小であり、誤差の範囲に含まれることが要因 とも考えられるが、Acc90は後述する図-13で示すフ

手順① 2011.3.11 (GL-12.5~GL-40) 手順① 2011.3.11 (GL=0~GL-12.5) 8 8 6 6 4 4 2 位相差 (rad) 位相差 (rad) 2 0 0 -2 -2 -4 -4 -6 -6 -8 -8 0 2 4 6 8 10 2 8 0 6 10 4 振動数 (Hz) 振動数 (Hz) 手順② 2011.3.11 (GL-12.5~GL-40) 手順② 2011.3.11 (GL=0~GL-12.5) 8 8 = 0.5706xy = 0.5622x v 6 6 位相差 (rad) 位相差 (rad) 4 4 2 2 0 0 10 0 2 6 2 4 8 6 0 4 8 10 振動数 (Hz) 振動数 (Hz) 手順③ 2011.3.11 (GL-12.5~GL-40) 手順③ 2011.3.11 (GL=0~GL-12.5) 8 8 0.5941x 6 6 = 0.8411 R 4 (rad) 位相差 (rad) 4 2 位相差 2 0 y = 0.696x0 $R^2 = 0.8144$ -2 -4-2 0 2 8 10 4 6 0 2 6 8 10 4 振動数 (Hz) 振動数 (Hz)

図-7 位相差と振動数(Acc90 GL0=~GL-12.5m)

図-8 位相差と振動数(Acc90 GL-12.5~GL-40m)

ーリエ振幅の大きい 2Hz 以下の範囲であるにも関わら

ず位相差が見られない原因は不明である。

図-9 位相差と振動数(Acc17 GL0=~GL-12.5m)

図-10 位相差と振動数(Acc17 GL-12.5~GL-40m)

図-11 位相差と振動数(Acc5 GL=0~GL-12.5m)

図-12 位相差と振動数(Acc5 GL-12.5~GL-40m)

図-7~図-12 は、フーリエ変換後の振幅の大小問 わず全ての値が含まれている。そこで、振幅の大きい 値のみ抽出し同様に位相差と振動数の関係を示すこと を試みた。具体的には、各強震計位置(GL=Om、GL-12.5m、GL-40m)におけるフーリエスペクトルについ て、パルス状の波形を平滑化する Hanning ウィンドウ ⁷⁾を実施し、その値よりも大きい振幅値のみを抽出し た(図-13、14)。 抽出した振幅値で、位相差と振動数の関係を表した 結果を図-15 に示す。抽出前の図-7、8 と比較する と、寄与率 R²は上がるが、傾きは大きく変わることは ない。表-4 の S 波速度でみてもそれほど大差ないと 判断し、あくまで得られた全ての実測データで分析す ることを意図とし、今回は Hanning ウィンドウ実施前 の全ての値を対象とすることとした。

0.10

GL=0m(実測)

図-14 Acc90 振幅値大抽出ありの フーリエスペクトル

	表-	-4	Acc90	振幅値	[大抽出な	しと	あり	の結果
--	----	----	-------	-----	-------	----	----	-----

		抽出なし	抽出あり
GL=0	傾き	0.5941	0.5952
\sim	寄与率 R ²	0.8411	0.9261
-12.5m	S波速度(m/s)	132	132
GL-12.5	傾き	0.696	0.7093
\sim	寄与率 R ²	0.8144	0.8738
-40m	S波速度(m/s)	248	244

(2) 地盤のS 波速度

地震を受ける前と地震時の地盤の S 波速度について、 実測値の結果を図-16、解析値の結果を図-17 に示す。 実測値において、深度に関わらず Acc5→Acc17→Acc90 の順に S 波速度が小さくなっている。特により浅い GL=0~GL-12.5m の位置では Acc17 と Acc5 は約 160m/s とほとんど同程度の S 波速度となっているのに対し、 Acc90 は約 130m/s と約 30m/s 小さい結果となった。解 析値も同様に Acc17、Acc5 に比べて Acc90 の S 波速度 の方が小さくなる結果となった。

図-17 S波速度解析值

地震時の S 波速度について PS 検層と比較した結果 を図-18、19 に示す。ここで、PS 検層及び解析値の S 波速度は、図-16、17 で示す S 波速度から地盤層厚毎 に伝搬時間を算出し、GL=0~GL-12.5m、GL-12.5~GL-40m のそれぞれで平均したものである。GL=0~GL-12.5m において、PS 検層の S 波速度が 151m/s に対し、 地震時 Acc90 の S 波速度実測値は 132m/s と約 10%低下 する結果となった。解析値においても 122m/s と約 20% の低下が見られた。GL-12.5~GL-40m においては、実 測値は 253m/s から 248m/s とあまり変わらないが、解 析値は 222m/s と約 10%の低下であった。

一方、地震時 Acc17、Acc5 の実測値は PS 検層に比 べてやや増加する結果であった。これについて、時系 列で考えると、2011 年 3 月 11 日に Acc90 の地震が発 生し、その 4 日後の 3 月 15 日に Acc5 の地震が発生し、 その約 1 年後の 2012 年 5 月 29 日に Acc17 が発生して いる。文献¹⁾によると、地盤の S 波速度は強震時に低 下しその後年数かけて回復に向かうとされているが、 今回 4 日後に回復している結果となった。Acc17 と Acc5 の S 波速度は PS 検層の結果よりも速くなってい るが、測定法の違いもあるため原因は不明である。

いずれにせよ、最大加速度との関係では、Acc90、 Acc17、Acc5 の順に S 波速度の低下が大きくなってお り、Acc90 のような比較的大きな地震時には地盤の S 波速度が明らかに低下することが確認された。また、 S 波速度の低下は軟弱な浅い層ほど顕著であった。

5. まとめ

地震時の地盤の剛性率(ここでは S 波速度で評価) が、地震を受ける前のそれに対しどの程度低下するか、 基盤面より比較的浅い軟弱層に設置された地中強震計 を利用して評価した。

その結果、地震時の S 波速度 Acc17 と Acc5 は PS 検 層の結果より S 波速度が速くなっているものの、 Acc90 のような比較的大きな地震時には地盤の S 波速 度が明らかに低下することが確認された。また、S 波 速度の低下は軟弱な浅い層ほど顕著であった。今回の 結果から、大きな地震動であるほど地盤の剛性が低下 し、結果として S 波速度が低下する現象の実証例の一 つとなった。

参考文献

- 澤崎郁,佐藤春夫(2006):強震動を受けた地盤における 地震波増幅特性の時間変化の検出、東北大学大学院修士 論文
- Tatsuo Ohmachi and Tetsuya Tahara (2011) : Nonlinear Earthquake Response Characteristics of a Central Clay Core Rockfill Dam, Soils and Foundations Vol. 51, No. 2, 227-238
- Schnabel, P. B., Lysmer, J. and Seed, H. B. (1972): SHAKE: A Computer program for earthquake response analysis of horizontally layered sites, Report No. EERC72-12, University of California, Berkeley
- 4) Yoshida, N., Kobayashi, S., Suetomi, I. and Miura, K. (2002): Equivalent linear method considering frequency dependent characteristics of stiffness and damping, Soil Dynamics and Earthquake Eng., Vol. 22, No. 3, 205-222
- 5) 栗塚一範、小川好(2015):地中強震記録を用いた等価線 形化手法の適用性の検証、平成27年東京都土木技術支 援・人材育成センター年報、15-22 (http://www.kensetsu.metro.tokyo.jp/jigyo/tech/star t/03-jyouhou/nenpo/nenpo.html)
- 6)東京都土木技術研究所(1996):東京都(区部)大深度地下
 地盤図 -東京都地質図集 6-地質柱状図集
- 7) 大崎順彦(1994):新・地震動のスペクトル解析入門