13.ゴムジョイント付きRC床版の輪荷重走行疲労実験

Wheel Running Fatigue Testing of RC Slabs with Rubber Joint

技術支援課 関口 幹夫

1. はじめに

都道における道路橋の維持補修実績は、筆者らが 平成 15年に行った分析 ¹⁾では、表 - 1に示すとおり 伸縮装置(以下、ジョイントとも標記する)の補修 件数の構成比は11.5%で舗装の次に多い。また、平 成6年に都道を管理する各建設事務所の補修担当者 に対する伸縮装置の補修工事 51 件のアンケート結 果²⁾は表-2のとおりであり、補修理由の順位は破 損劣化 44%、安全性確保 18%、振動 16%、騒音 14% であり振動と騒音を合せると30%と多く、伸縮装置 は騒音・振動の発生原因となっている。さらに補修 時に期待する効果では振動 31%、騒音 24%、耐久性 14%であり、振動騒音に関わる環境対策の占める割 合が多いことが解る。一方、大型車の割合が多い阪 神高速道路の伸縮装置の損傷要因の分析結果 ³⁾でも 損傷件数は、舗装の44%についで伸縮装置14%と多 い。また、都市内高速道路の損傷実態の鋼製伸縮装 置の破損内訳によると、本体の浮き 63%、コンクリ -トの損傷 16%、ボルトの破損 11%、その他 10% との報告がある 4)。

伸縮装置の点検は、外観の目視点検が一般的であ

り、異音や振動の発生がある場 合に叩き点検される程度である。 内部がどのように損傷している かについての調査事例はほとん どない。また、輪荷重の繰返し と雨水による伸縮装置と床版端 部の損傷は、そのプロセスと耐 用年数が定量化できていない。さらには損傷原因が 設計・施工の不良によるものか、構造的な寿命とい えるのか確認できずに抜本的改良を施す妨げとなっ ているとの指摘もされている⁴⁾。

都道の伸縮装置の補修サイクルは、沿道環境の保 全が優先されるために短く、図 - 1 のとおり 3~15 年に分布しているほか、図 - 2 に示すのとおり 1990 年以降の年平均補修サイクルは 10 年程度である¹⁾。 このように比較的早期に補修(交換)される実態か ら、ジョイントの交換が数回繰返されると既設床版 は、ジョイント撤去時にプレーカーによるハツリ過

	補修部位	a 補修件数	b 補修橋数	a 構成比%	b 構成比%
1	主桁	197	161	5.9	7.0
2	床版	247	194	7.4	8.4
3	伸縮装置	387	268	11.5	11.6
4	舗装	584	426	17.4	18.5
5	橋台	108	104	3.2	4.5
6	橋脚	101	82	3.0	3.6
7	支承	33	30	1.0	1.3
8	高欄	302	278	9.0	12.1
9	その他	455	216	13.6	9.4
10	不明	941	543	28.0	23.6
	計	3,355	2,302	100.0	100.0

表-1 補修実績¹⁾

表-2 伸縮装置の補修理由等の実態²⁾

補修理由(%)		破損内容(%)		供用年数(%)		期待効果(%)		補修時段差(%	
破損劣化	44	ゴム劣化	24	10年以下	4	耐久性	14	4mm 以下	2
騒音	14	変形·段差	13	11~20年	11	騒音低減	24	5 ~ 9mm	24
振動	16	ひび割れ・ガタ	18	21~30年	15	振動低減	31	10~14mm	18
安全確保	18	腐食·磨耗	5	31~40年	2	変らない	1	15~19mm	2
その他	13	コンクリート劣化	29	41年以上	7	その他	3	20mm以上	8
不明	4	ボルŀ破損	3	不明	61	不明	27	不明	47
		その他 6							
		不明	2						

ぎや不用意なひび割れによるダメージを受ける。ま た、ブレーカー先端のノミが床版を貫通する例もあ るほか、交換用ジョイントのアンカーが既設の鉄筋 に当たってセットできないケースでは、鉄筋を切断 することもある。いずれにおいても、ジョイントを 何回も交換することは、同じ箇所を何度もハツリ取 るなどにより床版の疲労耐久性を悪化させていると 推察できる。

近年、橋梁の耐久性向上の観点から、補修頻度の 多い伸縮装置にも関心が持たれるようになった。前 述の破損実態の分析³⁻⁴⁾のほか、耐久性向上に関す る検討事例⁵⁻⁸⁾も増加しつつある。しかしながら、 補修の繰返しが既設床版に与える影響に関する検討 は全く実施されていない。

以上の背景より本技術開発では、伸縮装置の補修 の繰返しが既設床版に与える影響に関する検討とし て、都市内で環境対策として使用実績が多い ゴム ジョイント、簡易なノージョイントとして使用実績 が増加する可能性のある アスファルト系ノージョ イント、10年前に小滝橋で試験施工済みの新材料新 形式の 炭素繊維シートで荷重支持型ノージョイン ト⁹⁾の3タイプについて、輪荷重走行疲労試験機を 使用して順次評価する予定である。

本報文は、最初に取上げたゴムジョイントについ て、補修を想定した取付け部の床版厚さが疲労耐久 性に与える影響を輪荷重走行疲労実験で検討したも のである。

2. 実験概要

2.1 試験体の概要

図-3 試験体寸法

図 - 2 都道の伸縮装置の補修サイクルの推移¹⁾

輪荷重走行実験の試験体の設置状況を図-3 に示 す。ジョイントを取付けるRC床版を4体製作して、 輪荷重走行試験装置の主桁上に游間50mmとなるよ うに配置し、ジョイントを3箇所設置した。ジョイ ントの設置は、即日交通開放の補修(交換)工事を 再現する手順で行った。

輪荷重走行実験は、試験体上を輪荷重が 6m区間 を往復載荷する方式とした。輪荷重走行試験機は、 当センター戸田橋実験場の写真 - 1 に示すゴムタイ ヤ式である。床版の支持条件は、走行方向(配力鉄 筋方向)は支間 2.5mの単純支持、支間方向(主鉄

写真 - 1 輪荷重走行試験状況

図 - 4 走行載荷プログラム

筋方向)は、床版中央で横桁(H328×B200×12×16) により弾性支持して橋脚上の支持条件をモデル化し ている。

床版の実験パラメータは、ジョイントメーカおよ び日本ジョイント協会にヒアリングした結果、ジョ イント取付け部の既存床版厚さの限界は、特に規定 や参考値は存在しない。しかしながら、経験的に100 mm以下では早期に損傷する例が見られるとの一致し た見解が得られた。本検討ではヒアリングを参考に、 ジョイント取付け部の既存床版厚を約20mmチッピ ング後ジョイントAは80mm、ジョイントBは100 mm、ジョイントCは120mmとした。

ジョイントを取付ける打継コンクリートは、ジェ ットセメント使用の設計基準強度 24 N/mm²(材齢 3 時間)で、補修工事で使用する専用のモービル車に より製造してネコ車で小運搬して打設した。締固め は棒状バイブレータを使用した。

輪荷重走行実験の開始は、ジョイント設置1週間 後とし、図-4 に示す走行載荷プログラムにより実 験を行った。タイヤ接地寸法は、157kN 載荷のとき 走行方向390 mm、床版支間(主鉄筋)方向340 mm(有 効幅230 mm) 接地面積は89700 mm²である。

2.2 伸縮装置

検討で取上げたジョイントは、振動や騒音が比較 的少なく実績の多い荷重支持型のゴムジョイント (ニッタ製 TF-S、 表-4

50)で、今後他のタイ プを比較する際の基準 となる形式を選定した。 ジョイントの設置イメ ージは図 - 5 のとおり

図-5 ジョイントの設置概要図

図-6 ジョイントの断面

表-3 ゴムの物性値

I	頁 目	単位	規格値	実測値	試験方法
	硬 さ		A55 ± 5	A54	JIS K 6253
弓	張強さ	N/mm ²	15 以上	17.8	IIS K 6251
	伸 び	%	400 以上	640	515 K 025 I
弓	裂強さ	N/mm ²	30 以上	47.0	JIS K 6252
熱老	硬さ変化		+10 以下	+ 2	
化	引張強さ	N/mm ²	13 以上	18.4	JISK6257 (70 ×96時間)
武 験	伸 び	%	300 以上	620	
圧	縮永久歪	%	25 以下	+ 19	JIS K 6262 (70 ×24時間)

で、断面形状を図 - 6 に示した。なお、ジョイント の長さは 1800mm である。また、アスファルト舗装は 舗設しない。ジョイントのゴムの物性値は表 - 3 の とおりである。ゴムジョイントの芯材の鋼板は SS400 規格、アンカーボルトは M16(SS400)である。

2.3 RC床版

ジョイントを取付けるRC床版端部の仕様は、ハ ンチなしに打下げる現行基準以前の補修事例が多い ハンチありの昭和47年道路橋示方書に準じて設計 した。図-7に試験体の配筋を示す。実験終了後切 断調査による配筋の出来高の有効高さを表-4に、 鉄筋の機械的性質を表-5に示した。

イント ジョイントAを設置する床版Aと床版B1 の製作 表 - 4 床版の配筋(有効高さは出来高)

床版 床版/ (mm)			钫(mm)	配力鉄筋(mm)					
	床 (mm)	上側		下側		上側		下側	
	()	呼径·間隔	有効高	呼径·間隔	有効高	呼径·間隔	有効高	呼径·間隔	有効高
A , B1	218.6	D19@225	49.3	D19@100	182.3	D16@200	62.2	D16@100	160.3
B2 , C1	234.4	D19@225	51.8	D19@100	198.3	D16@200	68.1	D16@100	1 82.1
C2 , D	256.8	D19@225	50.8	D19@100	213.7	D16@200	65.2	D16@100	201.1

図-7 RC床版の配筋・形状寸法

時の床版全厚は 217mm、ハンチ高は 40mm である。 ジョイントBの床版B2と床版C1の製作時の床版 全厚は 237mm でハンチ高は 20mm である。ジョイント Cの床版C2と床版Dの床版全厚は 257mm、ハンチ高 さは 0mm である。なお、切欠き部の製作時の床版厚 さは、チッピング前の 20 mmを考慮して、ジョイント A部では 100 mm、ジョイントB部は 120 mm、ジョイ ントC部は 140 mmで製作した。

床版コンクリートの配合表を表 - 6 に示す。疲労 試験終了後の材齢約 1 年のコア試験結果は表 - 7 の とおりである。コアの採取位置は、床版Aおよび床 版Dのひび割れのない箇所である。

3. 実験結果

3.1 床版の損傷状況

走行面の試験終了時ひび割れ状況を図 - 8 に示す。 走行面の初期ひび割れは、床版 B 1 と床版 B 2 の横 桁上に 15 万回(荷重 130kN 載荷 5 万回)で主筋方向 に発生した。床版 A は 25 万回(荷重 160kN 載荷 5 万回)で横桁上の主鉄筋方向に発生した。床版 C 1、 C 2 は 20 万回(荷重 130kN 載荷 10 万回)で横桁上 主鉄筋方向に発生した。床版 D は、60 万回(荷重

表-5 鉄筋の機械的性質

	呼び径	降伏応力	ヤング係数	引張強さ	破断伸び
	mm	N/mm ²	10^4 N/mm ²	N/mm ²	%
主鉄筋	D19	383.7	18.22	572.6	18.3
配力鉄筋	D16	354.0	17.43	518.6	20.8

表-6 RC床版コンクリート配合表

呼び強度	スランプ	空気量 水セメント比 細骨材							
N/mm ²	cm	%							
24	8	4.5	57.0	43.2					
セメント	水	細骨材	粗骨材	AE減水剤					
Kg/m ³									
276	157	794	1,091	2.76					

表-7 RC床版コア試験結果

供試	平均直径	高さ	圧縮強度	静弹性係数	ポマリンド	
体名	cm	cm	N/mm^2	N/mm ²	ホアクノレ	
A1	9.93	20.02	37.89	24,100	0.23	
A2	9.96	20.09	32.25	28,400	0.21	
D1	9.93	20.03	32.50	27,300	0.25	
D2	9.92	19.96	36.24	24,800	0.22	

200kN 載荷 20 万回)に横桁上主鉄筋方向に発生した。

ジョイントAは、走行回数 434、800 回でジョイン ト取付け部の後打ちコンクリート打継ぎ目部 図 - 8 参照)にせん断ひび割れが発生したので、この時点 を破壊と見なした。ジョイントBおよびDの床版は、 60 万回の走行でひび割れ損傷が見られるもののジ ョイントAの床版に比べ走行面での損傷は少ない。

図-8 床版走行面のひび割れ図

図-9 床版下面のひび割れ図

床版下面のひび割れは図 - 9 のとおりであり、走 行面に比べてひび割れは多い。ひび割れの発生は、 走行回数 10 回で床版厚の薄い床版 B 1 に、走行回数 100 回で床版Aにそれぞれジョイント設置部の後打 ちコンクリートに接するタイヤ走行直下の走行方向 に発生した。なお、走行面の打継目の開きは、破壊 直前まで微小で一体として機能していた。開きと段 差とずれについての詳細は 3.6 に記述する。

ジョイント端から約2cm離れた後打ちコンクリート位置で主筋方向に切断、さらに配力筋方向で 1/2 に切断した断面のひび割れを写真-2、3に示す。ジ

写真-2 床版切断面のひび割れ

写真-3 床版主鉄筋方向切断面のひび割れ

ョインAの床版Aは、ジョイントの長手方向端部(写 真 - 2のA参照)からほぼ45度の角度でハンチ上端 位置にひび割れが発生している。このひび割れは、 せん断ひび割れである。ジョイントは、荷重支持型 のゴムジョイントであるため芯材に鋼板が挿入され ており、タイヤ荷重の分散が優れていることによっ て、タイヤ載荷位置から離れたジョイント端部でせ ん断ひび割れが発生したものと推察される。このこ とより、ジョイント端部に走行位置が一致する配置 では、疲労耐久性が低下する可能性が高いので、走 行位置との関係に配慮が必要である。

床版AおよびB1の曲げひび割れの深さは、写真 -2より後打ちコンクリートの打継ぎ目面(下面か ら8cm)で止まっている。写真-3よりジョイントB (床版B2、C1)およびジョイントC(床版C2、 D)の曲げひび割れ深さは、下側主鉄筋位置で止ま っているものが多い。一方、曲げひび割れ本数はジ ョイントAの床版Aで16本、床版B1で13本と多 く、ジョイントBの床版B2は7本、床版C1は13 本、ジョイントCの床版C2は10本、床版C1は6 本であり、設置床版厚さが薄いほど発生本数が多い ことより、ジョイント設置部の疲労耐久性は、既設 床版厚が薄いほどひび割れ抵抗性は小さい。

本実験の範囲では、床版厚 8cm に比べ床版厚 10 cmは走行荷重200kN載荷で約20万回疲労耐久性が優 れていることから、床版厚 10 cm以上確保することが 疲労耐久性を低下させない目安になると考えられる。

写真-4 ジョイント裏面のひび割れ長さ

3.2 ジョイントの破損状況

写真 - 4 は、実験後ジョイントを床版から外した タイヤ走行位置裏面の損傷状況である。ボルトの損 傷は全くなかった。写真の赤線(破線)は游間部に平 行なひび割れが確認された範囲を示している。写真 - 4の最上段のD床版側にはひび割れはない。他の 床版におけるゴムジョイント裏面のひび割れ長さは、 床版厚の薄いものほど大きくダメージも大きい。

写真 - 5 は、写真 - 4 のジョイント本体のひび割れ の深さを調べるためにタイヤ走行位置で 3 cm間隔に 切断した断面である。ジョイントAは、芯材の上下 鋼板端部からのひび割れによりゴムが完全に切断し ている。ジョイントCは芯材の上側鋼板からのひび 割れは発生していない。ジョイントBは、ジョイン トAとCの中間の損傷状況である。このことからも、 ジョイント取付け部の床版厚さが薄いと、ジョイン ト本体の疲労耐久性にも影響を与えている。

写真-5 ジョイント切断面の破損状況

3.3 たわみ

ジョイント取付け部の支間中央床版端部から 130 mm位置の測定点(図 - 10)の 100kN 載荷時のたわみ 計算値を表 - 8 に示す。図 - 11 に静的弾性たわみの 測定結果を示す。床版 A の破壊は 43 万回で、その時

図 - 10 たわみ・ひずみ測定位置(C2,D 床版の例)
 表 - 8 100kN 載荷のたわみ計算値(単位:mm)

の 200kN 載荷の弾性たわみは 8.5 mmであり、引張無 視時の 100kN 載荷計算たわみ 2.9 mmの約 2.9 倍に相 当する。他の床版は 60 万回走行後も未破壊であるが、 床版 D を除くとたわみは 7 mmを超えており、ダメー ジは相当進行していると推察できる。一方、10 万回 以降荷重が増加していることから、図 - 12 には 100kN 換算たわみの推移を示した。図中の計算たわ みは床版 B 2 と C 1 (ジョイント B)の値を併記し ている。なお、床版を支持している主桁上の不陸調 整モルタルが走行回数とともに劣化して、床版の基 準面が変化したことから補正している。

走行1回目のたわみは、すべての床版で計算たわ みの全断面有効と引張無視の中間にある。また、バ ラツキはあるものの各床版の100kN換算たわみを超 える走行回数は床版Dを除くと概ね20~30万回程度 である。床版厚さが厚いほど耐久性が良い結果にな っている。

走行載荷時の動的計測の弾性たわみの測定結果を 図 - 13 に示す。走行スピードが最大でも 2.5km/h と 遅いために図 - 11 の静的載荷と同程度のたわみ値 であり、衝撃や制動荷重による影響は見られない。

横桁の支間中央点のたわみの推移を図 - 14 に示 す。各床版とも走行回数1回から10万回までは概ね 0.1mm~0.3mmの範囲に分散し、以降はデータが大き く変動している。大きく変動した理由は、主桁上の 不陸調整用モルタルが走行回数の増加とともに劣化 して、たわみ測定値に影響を与えたためである。20 万回時の床版A、床版C1、C2の横桁のたわみは ほぼ0で荷重伝達がない状態にある。これは主桁上 の接触面の修正で、モルタル充填が不完全であった ことによると推察する。

3.4 鉄筋ひずみ

床版支間中央でジョイント設置床版端部から 350mm 位置における主鉄筋の 100kN 載荷時ひずみ計 算値を表 - 9 に示す。計算値に対応する主鉄筋の弾 性ひずみの測定結果を図 - 15 に示す。引張無視時計 算ひずみを上回る回数は、床版Aは1回、床版B1 では 10 万回、床版B2は1万回、床版C1は 100 回、床版C2は1回、床版Dは10万回であった。ま

図 - 14 横桁の弾性たわみ

表 - 9 主鉄筋ひずみの計算値(単位:×10⁻⁶)

\backslash	Ŀ	側	下側		
床版	全断面有効	引張り無視	全断面有効	引張り無視	
A , B 1	-153.4	- 275.9	150.9	331.3	
B2,C1	-131.4	- 318.7	128.6	302.0	
C 2 , D	-114.1	- 375.8	111.1	275.7	

図 - 15 100KN 換算下側主鉄筋ひずみ

図 - 16 100kN 換算上側主鉄筋筋ひずみ

た、床版Aの破壊時のひずみは1000 µ を超えている。 上側主鉄筋の100kN 換算ひずみの結果を図 - 16 に 示す。引張無視の計算値と実測値はかけ離れており、 計算方法に課題がある結果となっている。計算方法 については今後さらに検討する必要があるので、本 検討における計算値は参考値扱いとする。

主鉄筋と同位置の配力鉄筋の 100kN 載荷時たわみ 計算値(参考値)を表 - 10 に示す。計算値に対応する 配力鉄筋の弾性ひずみ測定結果を図 - 17、図 - 18 に 示す。下側配力筋の引張無視時計算ひずみを上回る 回数は、床版 A では 10 回目、床版 B 1 では 10 万回、 床版 B 2 と床版 C 2 では 15 万回。なお、床版 C 1 と 床版 D はほぼ全断面有効時のひずみ程度で推移して いる。また、上側配力筋の引張無視時計算ひずみを 上回る回数は、床版 A では 10 万回、床版 B 1 と C 1 では 1 万回、床版 B 2 と C 2 では 5 万回、床版 D で は 35 万回であった。

3.5 主鉄筋断面の中立軸

支間中央で床版端部から 350 mm位置(ジョイント 設置後打ちコンクリート境界から約 2cm)の上下主 鉄筋ひずみから求まる主鉄筋断面の中立軸深さと走 行回数の関係を図 - 19 に示す。床版厚が薄いほど中 立軸は走行回数が少ない段階で、引張り無視時の計 算値より浅くなり、40 万回以降は約 60 mm前後で安 定している。

3.6 打継目の幅・段差・ずれ

ゴムジョイントを取付ける後打ちコンクリートと 床版上面の打継目の幅(開き)・段差・水平方向ずれ 量を三方向変位計により動的に測定した。測定位置 は、タイヤ外側より 50 mm離れた箇所である。走行方 向の幅と段差の関係を図 - 20 に示す。床版厚 80 mm の薄い床版Aと床版B1は35万回以降に段差が急 激に増加して、破壊直前の 40 万回の幅の絶対量は 0.4 mm程度である。床版Aの段差の急増は、打継目 位置の既設床版に発生した主鉄筋方向のひび割れが 貫通した状態になったことを示している。さらに、 後打ちコンクリート部で発生したせん断ひび割れが、 ハンチ上端にまで進展して破壊した現象とリンクし た動きと推察できる。また、床版B1は、床版Aが 43万回で破壊したことで走行を終了しているが、床 版A同様に 30 万回以後に段差が急増していること から破壊は近いと推察できる。床版厚100mmのB2

表 - 10 配力鉄筋ひずみの計算値(単位:×10⁻⁶)

	上	側	下	側
床版	全断面有効	引張り無視	全断面有効	引張り無視
A , B 1	-30.1	- 101.5	30.1	87.5
B2,C1	-23.1	-82.2	23.1	67.9
C 2 , D	-18.2	-68.1	18.2	53.5

図 - 17 100kN 換算下側配力筋ひずみ

図 - 19 主鉄筋断面の中立軸深さ

とC1の段差は40万回で0.3mmとやや大きく、ダメ ージが認められる。床版厚120mmの床版C2の段差 量は0。15mm以下と小さく、床版Dは段差も幅も動 きが微小であり、床版と一体性を維持しておりダメ

 床版C1
 床版C2
 床版D

 図 - 20 後打ちコンクリートの打継目の幅(開き)と段差の測定結果

ージは少ない。

一方、幅の開きは、40万回でも床版A、B1、B 2、C1、C2は概ね0.2~0.25mmであり、床版A と床版Bにおいても破壊直前に急増する動きはなか った。また、水平方向のずれについては、幅(開き) 同様に微小な範囲であった。なお、40万回以上の測 定は、タイヤがバーストした際に変位計が破損した ことにより測定を中止している。

4. 疲労耐久性の評価

ジョイント取付け部床版の疲労耐久性を評価する ために、100kN 換算輪数を式(1)により算出した。

$$N = \sum_{i=1}^{n} [\{\frac{P_i}{100}\}^m \times n_i] \times a_k \times 365 \quad \dots \dots \quad (1)$$

ここで、

N:年間の 100kN 換算輪数

P_i:任意の輪荷重(軸重測定値の 1/2)

*n*_i: *P*_iの観測輪数(軸数)

a_k=A/a

- a_k:一方向換算輪数の補正係数
- A:一方向大型車交通量/日
- a:軸重測定車線の大型車交通量/日
- m: R C 床版の S N 線図の傾きの逆数

なお、R C 床版の S - N 線図の代表的な*m*値は、大 阪大学の*m*=12.78 が使われる例が多い。ただし、こ の式の S は、はり状化した床版の押抜きせん断耐荷 力(P/Psx)を基にしていることから、この*m*を使用 すると耐用年数の推定値は過大に評価される。そこ で、本検討では、安全側の評価となるように環状八 号線の高井戸陸橋の残存疲労耐久性の検討で得られ た推定値¹⁰⁾*m*=3.53 4を採用する。

表 - 11 に輪荷重 100kN ~ 200kN 載荷の換算値の内 訳を示した。43 万回で破壊した床版 A の 100kN 換算 輪数は約 320 万輪、60 万回で終了した床版 C および Dは約584万輪と算定される。

次に、平成14年度に都道で観測した軸重測定デー タ¹¹⁾を使って、主な地点の疲労耐久年数の算定結果 を表-12に示す。参考値として舗装設計交通区分も 併記した。都道でもっとも重交通路線である環状八 号線の砧地点(三本杉陸橋や高井戸陸橋が近隣にあ

表 - 11 100kN 換算輪数

既設床版厚	100kN;	100kN			
(mm)	100kN	130kN	160kN	200kN	換算輪数計
80	100,000	285,610	655,360	2,156,800	3,197,770
100	100,000	285,610	655,360	4,800,000	5,840,970
120	100,000	285,610	655,360	4,800,000	5,840,970

る)の耐用年数は、

43 万回で破壊し た既存床版厚 80 mmでは25.9年、未 破壊ではあるが破 壊が近いと推定さ れる床版厚 100 mm では47.2 年、60 万回でも破壊しな

い床版厚 120 mmで

は 50 年以上と推定できる。

重交通路線でも実績が多い荷重支持型のゴムジョ イントの疲労耐久性は、輪荷重走行実験でも良好な 評価が得られた。

5. まとめ

都道の道路橋の伸縮装置の補修実績は、舗装の次 に多く、騒音・振動等の環境に配慮した対策が取ら れている実態から、比較的補修サイクルは短い。補 修(交換)が数回繰返されると既設床版は、ハツリ によるダメージが増加すると推測され、補修後の疲 労耐久性にも悪影響を及ぼしていると推察できる。 そこで、ゴムジョイントで補修(交換)した実物大 RC試験体の輪荷重走行実験を行った結果、以下の 知見が得られた。

床版厚さが薄いほど床版下面および床版上面の 曲げひび割れのダメージは大きく、床版厚が厚 いほど疲労耐久性は優れる結果となる。

ジョイント本体のダメージは、裏面に発生する ひび割れの長さで評価すると床版厚が薄いほど ひび割れは長くダメージは大きい。また、ゴム に入るひび割れ深さは、床版厚が薄い80mmでは 完全に破断し、床版厚120mmではごく浅く、床 版厚が薄いほどジョイント本体に与える疲労の

表 - 12 100kN 換算輪数による各地点の疲労耐久性

項目	観測地点	環八通り 砧	新大橋通り 築地	永代通り 永代	町田街道 町田	環七通り 小茂根	五日市街道 秋川
舗装設計交	通区分	N7 (D交通)	N6(C交通)	N5(B交通)	N6(C交通)	N7(D交通)	N4(A交通)
日一方向大型	日一方向大型車交通量		4,501	5,368	1,361	6,899	683
100kN換算輪数	枚/車線/年	69,016	8,973	3,739	21,693	40,001	6,103
100kN換算輪数	/一方向/年	123,632	12,769	12,223	21,693	54,453	6,103
ジョイント設置	80mm	25.9	250.4	261.6	1 47.4	58.7	524.0
部床版厚別疲	100 mm	47.2	457.4	477.8	269.3	107.3	957.1
労耐久性年数	120 mm	50<	460<	480<	270<	110<	960<

ダメージは大きくなる。

ジョイント直下の 100kN 換算たわみは、載荷初 期では全断面有効時計算たわみよりやや大きい 程度であるが、床版 D を除くと概ね 20~30 万回 で引張無視時たわみ計算値を超える。

主鉄筋のひずみは、100kN 載荷初期では引張無 視時計算値程度であったが、床版厚 80 mmの破壊 時では 1000 μを超えた。また、上下主鉄筋ひず みから算定される中立軸位置は、引張無視時の 計算値より浅くなるが安定している。

ジョイントを取付ける後打ちコンクリートの打 継目の開き、段差、ずれの三方向変位の動きは、 床版Aの破壊直前の段差は0.4 mmに急増してダ メージが大きいことを推察できる。一方、床版 C2と床版Dは、開きも段差も微小であり床版 と一体として機能していることが確認された。 ゴムジョイント付きRC床版の疲労耐久性は、 重厚通で過酷な環状八号線の砧地区の軸重観測 データを用いて評価すると、床版厚80 mmの耐久 年数は25.9年、床版厚100 mmでは47.2年、床 版厚120 mmでは50年以上と推定できる。 荷重支持型ゴムジョイントは、既設床版厚が100

mm以上確保できれば、重厚通路線においても床 版およびジョイントの疲労耐久性は良好である。

6. あとがき

ゴムジョイントを交換する際の既存床版厚さが疲 労耐久性に与える影響は、取付け部の床版厚さが2 cm変動するだけで床版とジョイントの双方に影響を 与えることが把握できた。今後、他のジョイントの 実験も進めているので随時取りまとめて報告したい。 また、床版厚が小さい場合の床版補強方法について も今後検討する予定である。

最後に理論解析の計算においては、大阪工業大学の 堀川都志雄教授のプログラムを使わせていただいた。 ここに記し感謝申し上げます。

参考文献

- 1) 関口幹夫、西尾伸郎、竹田敏憲:道路橋および歩道橋の補修履歴と健全度の現状分析、平成 16 年東京都土木技術研 究所年報、pp.137 - 152、2004
- 2) 阿部忠行、関口幹夫、小原利美ほか:土木構造物の維持更新と機能向上技術開発、平成7年東京都土木技術研究所 年報、pp.101 - 110、1996
- オ上睦夫、日野泰雄、黒崎剛史:効率的維持管理のための高架橋道路伸縮継手の損傷要因分析、土木学会論文集D、 Vol.62 No.3、pp.474-482、2006.9
- 4) 大間知良晃、八代茂、岩崎雅紀:鋼道路橋の床版端部と鋼製伸縮装置の損傷実態と補修・改良工法、横河ブリッジ グループ技報、27、pp.70-81、1998.1
- 5) 宮本文穂、櫛田賢一、竹内和美、高木秀敏、沼田克:橋梁懸垂式ジョイントの設計と施工、橋梁と基礎、93-11、 pp.41-48、1993.11
- 6) 大間知良晃、渡辺孝一、折口俊雄、岩崎雅紀:鋼製伸縮装置まわりの劣化機構の究明と耐久性向上手法の提案、横 河ブリッジグループ技報、28、pp.53 - 61、1999.1
- 7) 八木貴之、山田健太郎、小塩達也:道路橋伸縮装置の疲労耐久性評価法の検討、土木学会論文集A、Vol.63 No.3、 pp.486-495、2007.7
- 8) 阿部忠、木田哲量、小森篤也、樋田俊一: CFRP 支持埋設型伸縮装置の疲労耐久性に関する研究、土木学会・第六回
 道路橋床版シンポジウム講演論文集、pp.81-86、2008.6
- 9) 関口幹夫:炭素繊維シート埋設ジョイント工法による騒音・振動低減高架について、平成10年東京都土木技術研究 所年報、pp.111 - 116、1998
- 10) 関口幹夫、宍戸薫、森俊介:高井戸陸橋RC床版の残存疲労耐久性の評価、平成 14 年東京都土木技術研究所年報、 pp.101 - 112、2002
- 11) 東京都建設局:走行車両の軸重実態調査報告書(平成15年3月) 2003.3