Annual Report C.E.C., TMG 2006

14. 東京低地の既設橋梁をモデル化した橋脚-基礎系の動的遠心載荷実験

Centrifuge Model Test on the Dynamic Response of Typical Pier-Basement Systems Existing in Tokyo Lowland

技術調査課 廣島 実、岡田佳久(現北多摩南部建設事務所)、小川 好

1. はじめに

現在、東京都建設局が管理する橋梁は約 1200 橋あ る。これらの架設年代は関東大震災後の震災復興期、 第二次大戦後の復興期、高度経済成長期の 3 つの時 代に分けられ¹⁾、設計基準の違いにより各橋梁の耐震性 能が大きく異なっている。

そこで、当所では既設橋梁の耐震性能を簡易に評価 する方法として2質点3自由度モデル(以下SRモデル 図-1)による地震応答解析プログラムの開発を行ってき た²⁾³⁾⁴⁾⁵⁾。SRモデルは、入力地震動の設定や地盤と基礎 の相互作用をモデル化するバネ(以下集約バネ)の設定 が難しく確立された手法はない。

既往の研究 ⁵では、液状化地盤における既設橋梁に ついて集約バネを3パターン設定した SR モデルを作成 し、レベル 2 地震動時の液状化地盤条件下における 2 次元 FEM による有効応力解析との比較検討をおこなっ ている。この結果、集約バネの設定パターンの相違によ る影響は小さく、液状化地盤における SR モデルは概ね 2 次元 FEM 有効応力解析の結果を再現できるとしてい る。しかしながらこれまでの検討は、SR モデルを FEM 解 析で評価する、すなわち解析を解析で評価しているた め、実橋での SR モデルの適用性評価までは至っていな い。

このため、液状化発生の可能性が高い東京低地の地 盤と橋梁をモデル化し、レベル2地震動時の液状化・非 液状化地盤条件下の動的遠心載荷実験による検証と、 同モデルの2次元 FEM 有効応力解析をおこなった。

このうち本報では、動的遠心載荷実験の概要と結果について報告する。

2. 遠心載荷模型実験の概要

2.1 遠心載荷模型実験

地盤工学分野における遠心載荷模型実験は、縮小 模型地盤に遠心重力を作用させることで実際の地盤の 応力状態を再現させるものである。これは、地盤材料は 拘束圧依存性が強いためであり、実際の地盤中の拘束 圧と同様にすることで模型実験の明確な相似則が成立 する^{例えば 6)}。すなわち、模型地盤に遠心力で圧力を与え ることにより実際の地盤中の応力状態を表わすことを利 用したものである。これにより、地盤と杭等の地中構造物 との質量密度や剛性、応力-ひずみ関係について実物 と同等の条件での模型実験が可能となり、特に地盤と構 造物の相互作用を解明するような模型実験において、 破壊状態を含む非線形領域に至るまでの現象を再現し 評価できる利点を有する。

2.2 遠心載荷装置

遠心載荷実験装置は、遠心重力を発生させる回転装置(図-2)と地震動を再現する遠心振動台(図-3)で構成される。

回転装置の最大回転半径は 7.00mであり、最大搭載 容量は 700tonf*g(6,860kN)である。ただし、本計画地 盤における有効半径は 6.65mになる. この回転装置に は2つのバケットが搭載されているが、本実験で使用す るのは振動台バケットであり、静的バケットにはバランス ウェイトが設置される。

遠心振動台の搭載面積は長さ2.2m、幅1.07mである。 加振方向は水平一方向で、加振能力は最大加振力 120tonf(1,176kN)である。加振方式は電気油圧式アク チュエータを採用し、デジタル制御によって高振動数ま での応答特性を確保している。

2.3. 計測システム

計測システムは、回転装置内に設置されたオンボー ドコンピュータ制御のアンプ類及び A/D 変換装置と伝 送部及び地上にある収録部で構成される。最大計測総 数は 64ch であり、本実験では計測する物理量は、変位、 加速度、ひずみ、間隙水圧、土圧、温度等である。

図-2 遠心載荷模型実験装置の構成

2.4 相似則

表-2に遠心重力場(Ng場)で成立する地盤及び地中 構造物の相似則を示す。この相似則は、静的・動的問 題まで共通して成立するが、時間の縮尺に関しては浸 透・透水に関する相似率と動的問題に関する時間の相 似率は異なることに留意する。

物理量	記号	相似率
幾何的寸法	1	1/N
応力	р	1
ひずみ	ε	1
密度	ρ	1
加速度	а	Ν
速度	V	1
変位	d	1/N
時間	t	1/N
振動数	f	Ν
透水係数	k	Ν
梁の曲げ剛性	b	$1/N^4$
圧密・透水時間	t	$1/N^{2}$

表-2 遠心重力場(Ng場)で成立する相似則

表-3 実験ケース

ケース	1	2	3	4
模型地盤	非液状	化地盤	液状化	比地盤
橋脚模型	基本	共振	基本	共振

(b) 側面図

図-4 実験対象とした杭基礎ー橋脚モデル⁷⁾

3500

3. 実験方法

3.1 実験ケースおよび遠心加速度

遠心載荷振動実験は液状化地盤及び非液状化地盤 を対象にして、それぞれ構造物を2体ずつ設置し、全体 で4ケースを実施した。表-3 に実験ケース一覧を示す。 いずれのケースにおいても、図-4 に示すプロトタイプに 可能な限り相似則を満足した模型(以下基本模型と呼 ぶ)と基礎部分(フーチング及び杭基礎)は基本模型と 同じで地盤の固有周期に近い模型(以下共振模型と呼 ぶ)の2つの模型を作成し、2体同時に土槽内に設置し て加振した。実験での遠心重力は 60g(1g=9.8m/s²)とし た。

3.2 模型地盤

3.2.1 土槽

汯 サイ 地般

遠心模型実験用せん断土槽(内寸:長さ1900mm、幅 800mm、深さ600mm)内に模型地盤を作製し、遠心重力 60g での換算寸法は長さ114m、幅48m、深さ36m であ る。

3.2.2 模型地盤および固有振動数

地盤は液状化地盤及び非液状化地盤ともに、2層地 盤でモデル化した。表-4 に層序ごとの使用材料を示す。 また参考として、(3.1)式に示す遠心場での平均有効応 カ σ_m'と Vs の実験式(図-5)⁸⁰から定めた Vs とそれによ り定まる地盤の固有振動数を示した。なお液状化地盤 ケースでは、間隙水に水の 60 倍の粘性係数に調整した メチルセルロース水溶液を用いた。これは、表-2 の相似 則のとおり、遠心重力場での透水係数が N 倍(本試験 では 60 倍)となるため、間隙流体の粘性係数を調整す ることで過剰間隙水圧の発生が継続するようにしたもの である。

$$Vs = Vs_0 \times (\sigma_m' / \sigma_{m0}')^{0.2} \cdots (3.1)^{8}$$

$$Vs_0 = 135 \text{m/s} (乾燥地盤) \times$$

$$Vs_0 = 115 \text{m/s} (飽和地盤) \times$$

$$\sigma_{m0}' = 20.96 \text{kN/m}^2$$

表-4 模型地盤

屈				層	孠H		γ	σm'	Vs	0.8Vs	4Hi/Vsi
眉	口小	11.1%		model(cm)	proto(m)	z (m)	g∕cm3	kN∕m2	m/sec	m/sec	
1	上部軟弱層	7号珪砂Dr=60%	飽和	17	10.2	5.1	0.87	29.1	123	98	0.006924
2	下部層	4号珪砂Dr=90%	飽和	33	19.8	9.9	0.93	118.3	163	130	0.01015
					30.0					Σ	0.01707
							f(Hz)	58.6			
非液状	化地盤										
屋	夕玫	仕垟		層	₽H		r	σm'	Vs	0.8Vs	4Hi/Vsi
眉	白竹	1上作來		model(cm)	proto(m)	z (m)	g∕cm3	kN∕m2	m/sec	m/sec	
1	上部軟弱層	7号珪砂Dr=60%	不飽和	17	10.2	5.1	1.40	46.6	158	127	0.00536
2	下部層	4号珪砂Dr=90%	不飽和	33	19.8	9.9	1.49	189.7	210	168	0.00787
				Σ	30.0					Σ	0.01323
										f(Hz)	75.6

* γは仮定した相対密度と砂の物理試験結果(後掲表 3-4)より算定

** i 層目の有効上載圧 σ_{vi} = $\Sigma \gamma_{i-1}H_{i-1}+\gamma_{i}Z_{i}$ (γ :水中重量密度、H:層厚、z:層中心深さ) *** 平均有効応力 σ_{m} =2/3 σ_{v}

図-5 平均有効応力σ 'と Vs の関係 (緩詰地盤; Dr = 42%)

3.3 試験模型の検討

3.3.1 橋脚

橋脚剛性は、プロトタイプの橋脚の降伏剛性 EI_y と等 価な断面とする。文献 ⁷⁾より降伏剛性は、 EI_p =4.08E+07k Nm²(My=4956.6tfm, ϕ y=1.19E-03 1/m)であり、相似率 より模型剛性 EI_m =1/60⁴=3.14kNm²となる。

橋脚を鋼製(E=2.1E+8kN/m²)とし、橋脚模型の断面2 次モーメントは 1.52E-08m⁴となり、橋軸直角方向の幅を 5m/60=0.083m とすると、橋軸方向の厚さは 0.013m とな る。

3.3.2 杭

杭の剛性は、プロトタイプの杭の初期剛性(軸力あり) EI_cと等価な断面とする。文献⁷⁾より初期剛性は、 EI_p=2.66E+06kNm²(Mc=60.2tfm, ϕ c=2.22E-04 1/m)で あり、相似率より模型剛性 EI_m=1/60⁴=0.205kNm²となる。

この剛性に相当する杭模型を杭径 1.2m/60=20mm で 作成すると、アルミニウム製 (E=7.55E+7kN/m²)の肉厚 1.0mm とすることにより、EI_m=0.204kNm²とすることができ る。

3.3.3 上部工重量

プロトタイプ橋脚の固有周期を計算し、基本模型および共振模型の模型上の上部工重量を算出する。固有 周期の計算は道路橋示方書V耐震設計編⁹より、以下 の式を用いた。計算結果を表-5に示す。

$$T = \frac{2\pi}{\sqrt{g}} \sqrt{\delta p} \qquad \cdots (3.2)^{9}$$
$$\delta p = \frac{Wuh^3}{3EI} + \frac{0.8Wphp^3}{8EI} \qquad \cdots (3.3)^{9}$$

図-6(1)~(2)に模型地盤および試験体配置図を示す。

		proto	其木榵型	六 振侯空		
		proco	조가 (옷도	非液状化	液状化	
橋脚高さ	m	10	0.167	0.167	0.167	
橋脚EI	kNm2	4.08E+07	3.19	3.19	3.19	
橋脚幅	m	5.0	0.083	0.083	0.083	
橋脚奥行	m	2.2	0.013	0.013	0.013	
Wp1	kN	2750	0.0141	0.0141	0.0141	
Wp2	kN	712.25				
wp1+wp2	kN	3462.25	0.0141	0.0141	0.0141	
上部工重量Wu	kN	6430	0.026	0.056	0.080	
δp1	m	5.26E-02	7.59E-04	1.63E-03	2.34E-03	
δp2	m	8.50E-03	1.24E-04	1.24E-04	1.24E-04	
δp2	m	6.11E-02	8.83E-04	1.76E-03	2.46E-03	
田右田期工		0 407	0 00022	0.01207	0.01652	

固有振動数f Hz

2.012842 120.1 77.1

表-5 上部工重量および固有周期(振動数)

3.4 模型地盤材料

模型地盤に用いる地盤材料の基本物性および粒度 分布を表-6および図-7に示す。液状化・非液状化地盤 とも相対密度の高い下部層(4 号ケイ砂、Dr=90%、層厚 H=33cm)と軟弱な上部層(7 号ケイ砂、Dr=90%、H= 17cm)の地盤構成であるが、液状化地盤は、地表まで 飽和している。

3.5 模型地盤作製方法

模型地盤の作製手順を以下に示す。

図-6 杭基礎模型と計測機器配置

表-6 地盤材料の物性値

	Gs	γ _{max} (g/cm ³)	γ min (g/cm ³)
岐阜産4号珪砂	2.64	1.54	1.29
岐阜産7号珪砂	2.645	1.577	1.19

図-7 粒度分布

60.5

3.5.1 乾燥砂地盤

(1) 杭基礎模型の設置

杭基礎模型を所定の位置に治具で固定する。

(2) 下部層の作製

計量した乾燥砂(4 号砂)を1リフト 50mm 程度に撒き 出す。撒出した砂層に鉄板を敷き詰め、鉄板上から振 動締固め機で所定の地盤高さまで締め固める。これを 繰返し、所定の層厚を作製する。

(3) 上部軟弱層の作製

計量した乾燥砂(7 号砂)を撒出し装置により空中落 下法により撒き出す。この時、撒出し装置の撒出し速度 を、所定の仕上がり相対密度に調整する。

3.5.2 液状化地盤

(1) 杭基礎模型の設置、下部層の作製

乾燥砂地盤と同じであるが、液状化層の作製時にセンサーの設置精度を確保するため、下部層作製の途中で地盤中に設置する加速度計、間隙水圧計を、リン青銅板に取り付けて所定の位置に設置する。

(2) 間隙水の注入

下部層に間隙水(メトローズ水溶液)を注入する。

(3) 上部軟弱層の作製

下部層上部から100mm 程度まで間隙水を満たし、ふるいを使いながら7号砂で液状化層を撒きだす。このとき間隙水の水深を100mmに保つよう(沈降距離の確保) に間隙水を足しながらおこなう。

3.6 計測項目および計測機器

図-6(1)~(2)に計測器配置を示し、図-8 に杭のひず みゲージ取り付け位置図を示す。表-7 に計測項目と数 量の一覧を示す。以下に各計測機器の設置要領と設置 の目的を示す。

表-7 計測項目一覧(液状化ケース時の最大数)

計測器	計測項目	計測位置	数量
加速度計	構造物及び地盤加速度(水平)	構造物、地盤、振動台	15
変位計	構造物変位	橋脚、フーチング、土槽	4
ひずみゲージ	杭の断面力		26
土圧計	フーチングに作用する土圧		2
間隙水圧計	地盤内間隙水圧		9
高速度ビデオカメラ	地表の変状	地表	1

注)計測チャンネルの制限から、杭のひずみ計測は、杭頭部は単 軸ゲージとして曲げおよび軸ひずみを計測した。地中部について は曲げブリッジを構成し、曲げひずみのみの計測とした。

(1) 加速度計

加速度計は加振方向について地盤内部及び橋脚上 部およびフーチング、振動台に設置する。これにより地 盤の応答や軟化の程度(剛性低下)、構造物の慣性力 を把握するデータを得ることができる。

(2) 変位計

変位は橋脚上部およびフーチングの応答変位をレー ザー変位計により時刻歴で計測する。

(3) ひずみゲージ

杭にはひずみゲージを取り付け、各部に作用する断 面力を計測する。

(4) 土圧計

フーチングでの水平地盤抵抗およびフーチングに作用 する側方流動圧を計測するためフーチング側面に土圧 計を設置する。

(5) 間隙水圧計

液状化地盤ケースにおいては、加振中の過剰間隙水 圧の上昇、およびその消散を把握するため、杭近傍お よび杭から離れた場所に鉛直方向に3点間隙水圧を計 測する。

(6) 高速度ビデオ

高速度ビデオ(秒 500 コマ)により構造物を撮影し、タ ーゲットの動きから振動の様子を把握する。

3.7 データ収録

本遠心実験装置のデータ収録システムは、遠心装置 上で計測信号を増幅,デジタル化している。A/D コンバ ータのデジタル化処理は、フルスケール(アンプ出力± 10V)16bit で行われる。実験においては以下の2種類の データ収録パターンを用いた。

(1) 静的データ収録

遠心力載荷過程(1G->60G)及び振動実験実施後の間隙水圧消散過程のデータ収録パターンで、データサンプリング周期 1sec である。

(2) 動的データ収録

振動実験時のデータ収録パターンで、データサンプ リング周期 1msec である。

液状化地盤ケースにおいては過剰間隙水圧の消散 過程を追跡する目的から、動的データ計測の終了後、 継続して静的データ収録モードでデータ収録を実施し た。

表-8 動的遠心載荷試験の入力地震波と目標加震レベル (プロトタイプ)

No.	1	2	3	4
入力地震動	PI 波、八戸波	PI 波、八戸波	PI 波、八戸波	PI 波
最大加速度(cm/s²)	50	100	200	500

PI 波: 1994 年兵庫県南部地震でのポートアイランド観測波 NS 成分 (GL-79m)の基盤波

八戸波:1968年十勝沖地震での八戸港観測波 EW 成分((基盤波)³⁾

3.8 実験手順

(1) 遠心載荷振動実験模型の搭載

作製した模型地盤を遠心載荷装置上の振動台に搭 載する。

(2) 実験準備

模型搭載後、結線、計測準備等の実験準備を行う。

(3) 遠心載荷

遠心載荷装置を所要の回転数で回転させ、模型地 盤に遠心重力を作用させる(ここでは 60G)。

(4) 振動試験の実施

所定の遠心重力に達した後、所定の加振入力にて振 動実験を実施する。図-9 に加振入力の時刻歴(プロトタ イプ)を示す。遠心載荷場での加振においては、表-2の

(b)液状化地盤

図-10 模型地盤の伝達関数(模型スケール)

表-9 模型地盤の卓越振動数と平均的なせん断波速

度

ケース	卓越振動数f (Hz)	平均せん断波速度 Vs (m/s)
非液状化地盤	88	166**
	$(T_{\rm gp}{=}0.68~{\rm sec})$ *	
液状化地盤	78	156**
	$(T_{gp}=0.77 \text{ sec})$	

*Tgp:プロトタイプ換算した地盤の固有周期

**せん断波速度は下記より算定

 $Vs = 4H \cdot f$

H:模型地盤の厚さ(0.5m)

相似則にしたがい、時間軸は1/60に、最大加速度振幅 は60倍に調整した。

非液状化地盤のケースでは、種々の加振レベルの挙 動を把握する目的から、表-8 に示す加振レベルによる 試験を実施した。一方液状化地盤のケースでは、最大 加振(表-8の4)1回で試験を終了した。実験は小さい入 カレベルの順におこない、地盤特性を把握する目的で、 地震波入力の前後には最大加速度振幅 20cm/s² 程度 のホワイトノイズ加振をおこなった。

(d) ケース4(液状化地盤;共振模型)図-11 杭基礎-橋脚系の伝達関数

ケース	1	2	3	4
模型地盤	非液状化地盤		盤 液状化地	
橋脚模型	基本	共振	基本	共振
橋脚一上部工系	103 (T _m =0.558)	64 (T _{sp} =0.938)	102 (T _m =0.598)	53 (T _{en} =1.14s)
(実物換算固有周期)	120	77	120	60
同上設計值				
地盤-基礎	97	62	95	49
ー橋脚・上部工系				

4. 実験結果

4.1 模型地盤および杭基礎—橋脚模型の動的 応答特性

図-10 にホワイトノイズ加振時の加速度応答時刻歴か ら算定した各ケースでの模型地盤の伝達関数(地表 AC-C1/基盤 AC-N、矢印)、表-9 に伝達関数から推 定した模型地盤の卓越振動数と平均的なせん断波速 度を示す。

表-11 各ケースの入力加速度実測値 (AC-N)

(b) 液状化層下部(GL=-10.2m)の過剰間隙水圧時刻歴

(c)下部層(非液状化層)中間部(GL=-20.1m)の過剰間隙

水圧時刻歴

(d)入力地震動の時刻歴と各センサー位置 図-12 液状化地盤の過剰間隙水圧比時刻歴(実物換算)

この結果、模型地盤の卓越振動数は表-5の推定値よ りも若干大きくなった。これは(3-1)式の推定式が比較 的緩詰めの地盤(相対密度 Dr=42%)を対象としているの に対し、模型地盤の下層部は密詰め(相対密度 Dr=90%)であることが原因と考えられる。

図-11 にホワイトノイズ加振時の加速度応答時刻歴か ら算定した各ケースでの杭基礎一橋脚系の伝達関数、 表-10 に伝達関数から推定した杭基礎一橋脚系の卓越 振動数(矢印)を示す。杭基礎一橋脚系の伝達関数は、 フーチングより上の橋脚-上部工系(例えば ST/SC)の 場合と、地盤-基礎-橋脚・上部工系(例えば ST/N)の 2種類を算定した。

表-10より橋脚-上部工系の固有振動数は設計値よ りも小さいが、相対的な関係は満足されていること がわかる。また、地震時の動的応答に支配的である と考えられる地盤-基礎-橋脚・上部工系の固有振 動数は橋脚-上部工系よりも小さい。

4.2 杭基礎—橋脚構造物系の地震応答特性 ここでは地震時の模型地盤および杭基礎—橋脚構

造物の応答特性を、液状化地盤・非液状化地盤各ケー ス共通の PI 波 500gal 加振(表-11)で比較、検討する。 なお、これ以降各物理量は全て表-2 に従って実物換算 して表記する。

(1) 地盤の過剰間隙水圧比

図-12 に、液状化地盤における地盤の過剰間隙水圧 比の時刻歴を示す。(a)、(b)の液状化層では、地震動の 開始直後にほぼ 1.0 に達し、完全液状化していることが 確認できる。また、加振が終了しても液状化層内の過剰 間隙水圧は減少せず、液状化状態が継続している。一 方、非液状化層である下部層では、加振中に瞬間的に 過剰間隙水圧比が 1.0 程度を示すものの、地震動の振 幅が小さくなると過剰間隙水圧比は 0.5 程度に減少する。 これは透水係数が大きいことによる過剰間隙水圧の蓄

(b) 下部層上面 C3

図-15 液状化地盤の加速度時刻歴 (PI 波 500gal)

積が抑制されたためと考えられる。

(2) 加速度応答特性

図-13 に橋脚模型上部工上で計測した加速度時刻歴 を示す。この結果、液状化地盤(図-13(c)、(d))の最大 応答加速度値は、461cm/s²(ケース3)、362cm/s²(ケース 4)となり、非液状化地盤(図-13 (a)、(b))の 874cm/s²(ケ ース1)、647cm/s²(ケース2)よりも小さな値となった。また、 どちらのケースも上部構造物の固有周期 Ts の短い基本 模型(ケース1、3)のほうが、固有周期 Ts の長い共振模 型(ケース2、4)よりも大きく応答している。

図-14、図-15 に、それぞれ非液状化地盤、液状化地 盤各ケースの代表的な位置での加速度時刻歴を示した。 地表面 C1 測点では、非液状化地盤での最大応答加速 度値が 513cm/s²であるのに対し、液状化地盤の場合は 118cm/s²であり大きく減衰している。これは、液状化し

図-16 地盤の最大加速度の深度分布(PI波 500gal)

衣	-12	机與の	取入軸し	うみ
		_	0	

ケース	1	2	3	4
模型地盤	非液状化地盤		液状化地盤	
橋脚模型	基本	共振	基本	共振
軸ひずみ(μ)(南杭)	632	379	268	313

表-13 杭頭の最大曲げひずみ					
ケース		1	2	3	4
模型地盤		非液状化地盤		液状化地盤	
橋脚模型		基本	共振	基本	共振
曲げひずみ	南杭	348	526	921	1051

475

904

1016

中杭

(μ)

462

た地盤内部ではせん断応力が伝達されなくなり、上 部に地震動が伝達されなくなるからと判断できる。 一方、液状化しない下部層上面 C3 測点では、非液状 化地盤ケースでの最大応答加速度値は 497cm/s²、液 状化地盤ケースでは同547cm/s²で大きな差はなかっ た。

図-16 に、地中での最大加速度値の深度分布を示す。 先に述べたように、非液状化地盤では地層内で加速度 が伝達されているのに対し、液状化地盤では下部層と 液状化層を境に、加速度応答が大きく減衰していること が明確に確認できる。

(3) 杭の応答

表-12に各ケースにおける杭頭(フーチング直下)の杭 (南杭)の軸ひずみの最大値(絶対値)を示す。非液状 化地盤の場合よりも液状化地盤のほうが軸力変動は小 さくなる傾向があり、ロッキング(図-1参照)の影響が低減 されるものと考えられる。

表-13 に各ケースにおける杭頭の杭の曲げひずみの 最大値(絶対値)を示す。最大曲げひずみは地盤状況 にかかわらず、上部工質量の大きい共振模型のほうが 大きい。また、非液状化地盤の場合よりも液状化地 盤の場合のほうが大きいが、これは、液状化により 杭自身の地盤反力が低減したこと、フーチングの前 面地盤反力が喪失したことが原因と考えられる。一 方、各ケースとも杭の位置による曲げひずみの差異 は明確に認められなかった。

図-17~図-20 に、各ケースの杭の曲げひずみの時 刻歴を示す。曲げひずみの時刻歴波形の特長の概要 を以下に示す。

- 曲げひずみ時刻歴の形状は杭位置(外側と内側) によらず、同じ試験ケースにおいて杭頭、地中部そ れぞれでほぼ同様である。
- 非液状化地盤と液状化地盤では、ひずみ時刻歴波 形の形状が大きく異なる。液状化地盤では振幅が 大きく、周期の長い波形となる。これは、液状化の 発生により地盤のせん断剛性がより低下し、地盤--杭基礎一構造物系の固有周期がより長周期側に移 行したためでと考えられる。

地中部での曲げひずみ時刻歴においては、基本

模型よりも共振模型のほうが波形の後半部に周期 の長い振幅が出現し、地中部の杭の断面力に対す る上部構造物慣性力の影響がより大きいことを示唆 している。また、この傾向は非液状化地盤よりも液 状化地盤のほうがより顕著である。

上記の理由として、共振模型の上部工質量が基本 模型よりも大きいこと、共振模型の固有周期が地盤 の等価固有周期により近いことが理由と考えられ る。

図-21 に杭頭の曲げひずみが正負の最大値を示した 時刻での杭の曲げひずみの深度分布を示す。

非液状化地盤のケース1およびケース2においては、 緩詰めの非液状化層と密詰め下部層の境界部で反対 符号の極大値を示すような分布形となっている。また、

下部層内では深部で曲げひずみが収束していく傾向を 示している。

一方、液状化地盤のケース3およびケース4において は、杭頭部で最大曲げひずみを示した後、緩詰めの液 状化層と密詰め下部層の境界部での極大値が現れず、 下部層内に変曲点が移行している。これは、液状化層 で杭の地盤反力が減少したため、その分を下部層内で 負担したためと考えられる。

なお、この実験では全ての加振ケースで杭模型のひ ずみは母材の弾性限界(材質:アルミニウム、 ϵ_y =2,000 μ st、 σ_y =140MN/m²、E=70,000MN/m² を仮定)以内に あり、杭基礎は弾性応答したものと判断できる。

(4) フーチング土圧

図-22 にフーチング前面土圧時刻歴を示す。非液状 化地盤(ケース1、2)では最大 100kPa 程度の動的土圧 が観測されたが、液状化地盤(ケース3、4)では最大 20kPa 程度と大きく減少した。液状化地盤の場合は残留 土圧が見られるが、これは液状化により地盤が沈下した ため地下水位が上昇し、加振前の土圧と比較して相対 的に静水圧が増加したためと考えられる。

5. まとめ

これまで得られた動的遠心載荷実験による液状化・ 非液状化地盤と杭基礎橋脚との相互作用についてまと めると以下のとおりである。

- ①液状化地盤における構造物の応答加速度は、非液状化地盤に比べ小さくなる。
- ②液状化地盤では比較的硬固な下層地盤と液状化層 の境で加速度応答が大きく減衰し、地表面へ伝達す る加速度が小さくなる。
- ③地盤が液状化すると杭基礎の軸力変動は小さくなる 傾向があり、ロッキングの影響が低減される。
- ④液状化により杭の地盤反力およびフーチング前面地 盤反力が低減し、杭の断面力は増加する。

本報告では、SR モデルによる簡易耐震評価手法の 適用性の検証の一つとして、液状化する東京低地地盤 と既設橋梁をモデル化した動的遠心載荷実験を実施し た。しかし、本文では実験結果の紹介に留まっており、 今後さらなる実験データの整理・解析と杭基礎のプッシ ュオーバー解析等による SR モデルの検証が必要であ る。

参考文献

- 東京都建設局(2004):東京都の橋
- 2) 岡田佳久・中村正明・小川好(2002): 簡易モデルを用いた構造物の地震応答の検討、平14都土技研年報、263-272
- 3) 岡田佳久・中村正明・小川好(2003): SR モデルにおける地盤バネ定数と減衰係数の検討、平15 都土技研年報、199-208
- 4) 岡田佳久・小川好・中村正明(2004):ケーソン基礎を対象とした地盤バネ定数と減衰係数の検討、平16都土技研年報、259-262
- 5) 岡田佳久・小川好・廣島実(2005):既設橋梁の簡易地震応答解析手法の液状化地盤への適用性、平17都土技研年報、 225-231
- 6) 地盤工学会(2004-2005):講座「遠心模型実験-実験技術と実務への適用-」、土と基礎 No. 561-No562
- 7) (社)日本道路協会:道路橋の耐震設計に関する資料、平成9年3月
- 8) 佐藤 清(2002): ベンダーエレメントを用いた遠心重力場での地盤のS波速度・P波速度の測定、土木学会第57回 年次学術講演会
- 9) 社団法人 日本道路協会(2002):道路橋示方書·同解説V耐震設計編(平成14年3月)
- 10) 阪神淡路大震災·地盤調査研究会(1997):平成9年度報告書、150-152.